

Download considered harmful implies a flexible federation framework

Malcolm Atkinson Malcolm.Atkinson@ed.ac.uk

Transition in data-powered research

- Technical challenges dominated so we ignored human issues
- The power of today's technology
- Plus our immense wealth of data
- Plus the complexity of pressing global challenges means we must change our behaviour

Transition in data-powered research

- Technical challenges dominated so we ignored human issues
- The power of today's technology
- Plus our immense wealth of data
- Plus the complexity of pressing global challenges means we must change our behaviour

In the past

Transition in data-powered research

Story line

- Emergence of the data bonanza
- Introducing human
 - concerns
 - governance
 - judgement
- Balancing automation with control
 - lingua franca
 - persistent pervasive honouring of intentions
 - respecting all forms of diversity
- Balancing stability with agility

- Experimental Science
- Theoretical Science
- Computational Science
- Data-intensive Science
 - Digital technology yields data bonanza
 - Laden with latent information
 - Challenges learning
 - to handle volume
 - to discover the knowledge
 - to share the opportunities openly
 - Outruns Moore's law
 - Sociological and technological limits

- Experimental Science
- Theoretical Science
- Computational Science
- Data-intensive Science
 - Digital technology yields data bonanza

The

- Laden with *latent* information
- Challenges learning
 - to handle volume
 - to discover the knowledge
 - to share the opportunities openly
- Outruns Moore's law
- Sociological and technological limits

Jim Grey, Microsoft Research

- Experimental Science
- Theoretical Science
- Computational Science
- Data-intensive Science
 - Digital technology yields data bonanza

The

limits

- Laden with *latent* information
- Challenges learning
 - to handle volume
 - to discover the knowledge
 - to share the opportunities
- · Outrune Moore's lar

May all your problems be technical ones

Jim Grey, Microsoft Research

- Experimental Science
- Theoretical Science
- Computational Science
- Data-intensive Science
 - Digital technology yields data bonanza

The

11

limits

- Laden with *latent* information
- Challenges learning
 - to handle volume
 - to discover the knowledge
 - to share the opportunities
- Outruna Moch's law

May all your prob

s be technical ones

Jim Grey, Microsoft Research

Browser Based Apps		USER LAYER Desktop Apps	Script Based Apps				
		USING					
R E G I S T R Y	Semantics	VO Query Languages VO CORE Formats	Data Models	D P R O T O C O L S			
		SHARING		S			
Data and Metadata Collection Storage RESOURCE LAVER Computation							

rapid development of agreements global adoption continuous extension

rapid development of agreements global adoption continuous extension

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

50 years since Jocelyn Bell discovered pulsars

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Gravitational waves after 100 years

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Higgs boson after 50 years

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Pressing challenges

with

International Commercial Forces

• Astronomy

- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Pressing challenges

with

Retaliation Biases Tradition Partition

International Commercial Forces

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Pressing challenges

with

Retaliation Biases Tradition Partition

International Commercial Forces

- Astronomy
- Environmental sciences
- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Lives Economics Resources Values

Pressing challenges

with

Retaliation Biases Tradition Partition

International Commercial Forces

- Astronomy
- Environmental sciences

Lives

Economics

Resources

Values

- Climate and weather
- High-energy physics
- Life sciences
- Social sciences
- Humanities

Pressing challenges

with

global and local pressures

Habitability Food Water Species

50 years ago

Edsger Dijkstra

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction, branch instruction, conditional clause, alternative clause, repetitive clause, program intelligibility, program sequencing CR Categories: 4.22, 5.23, 5.24

Editor:

For a number of years I have been familiar with the observation that the quality of programmers is a decreasing function of the density of **go to** statements in the programs they produce. More recently I discovered why the use of the **go to** statement has such disastrous effects, and I became convinced that the **go to** statement should be abolished from all "higher level" programming languages (i.e. everything except, perhaps, plain machine code). At that time I did not attach too much importance to this discovery; I now submit my considerations for publication because in very recent discussions in which the subject turned up, I have been urged to do so.

My first remark is that, although the programmer's activity ends when he has constructed a correct program, the process taking place under control of his program is the true subject matter of his activity, for it is this process that has to accomplish the desired effect; it is this process that in its dynamic behavior has to satisfy the desired specifications. Yet, once the program has been made, the "making" of the corresponding process is delegated to the machine. dynamic progress is only characterized when we also g call of the procedure we refer. With the inclusion of we can characterize the progress of the process via a textual indices, the length of this sequence being e dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while or repeat A until B). Logically speaking, such clau superfluous, because we can express repetition with recursive procedures. For reasons of realism I don't clude them: on the one hand, repetition clauses ca mented quite comfortably with present day finite eq the other hand, the reasoning pattern known as makes us well equipped to retain our intellectual g processes generated by repetition clauses. With the the repetition clauses textual indices are no longer describe the dynamic progress of the process. With each a repetition clause, however, we can associate a so namic index," inexorably counting the ordinal nur corresponding current repetition. As repetition clau procedure calls) may be applied nestedly, we find t progress of the process can always be uniquely charac (mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices programmer's control; they are generated (either by of his program or by the dynamic evolution of the proc he wishes or not. They provide independent coordina

Ack: Anusuriya Devaraju

- Prevalent today
- FAIR pushes download
- Evidence of value?
- Researchers own devices
- Provenance unsupported

Enabling The Discovery of Open Data Through Recommender Systems

Anasuriya Devaraju Theme 2 - Data for Science WP5 Reference Model, Session 1–2 : Reference Model, Semantic Linking And Architecture (WP5), Sult ENVIO WEEK, Molage, 0* – 34* Nov 2017.

MINERAL RESOURCES

- Prevalent today
- FAIR pushes download
- Evidence of value?
- Researchers own devices
- Provenance unsupported

Simulation Ru	_	FDSN Data Download Runs				
			April .			
materian analysis was only us when a	analysis .	10 10 1010	same provide manadal	54794,88,- 8	ar or mut	
contracted and \$2,500 - \$10,500	and the set	10.00.000	durine accession, provident.	dist ("life, here,		
make mathematics (C. Di to KI S.	wallheet	11 21 202	domial amazinta protectaria.	102 PMS has who pick	31-02-021	
manufactures and a second second	10440000	14.101-010	annear benear broot and all the	54790,ML - W	41101000	
matter also adding a rest of the part of the	Ballance.	10.00.000	duction (Automation), BARE (RYR10007).	the Philipping	at at and	
10.00 (action) 1400 Terms 100 (action)	Balleri	8.8.00	Annual Annual Provide Annual Provider, 1	205,04,205 H	- P. M. M.	
working period						
No. Marcel		100	847		- Test	
N. B.					10.00	
1.		10			and loss	
T. *			b			
82					200.00	
2.4		10			100 May 100	
1.9		10			101.00	
17. W		1.00	11 C		10100	
1	-	1		Ack: Aless	andro Spinuso	
	Senso for M	rs' data isfit anal	with comm lysis (time-i	ion propert range, even	ies t)	

- Prevalent today
- FAIR pushes download

- Download locally then Analyze: a workflow that cannot be sustained
- Climate researchers
- Impact researchers

Ack: Christian Pagé

- Prevalent today
- FAIR pushes download
- Evidence of value?
- Researchers own devices
- Provenance unsupported

Gravitational wave detection

LIGO: (Laser Interferometer Gravitational-Wave Observatory)

- Aims to detect gravitational waves predicted by Einstein's theory of relativity.
- Can be used to detect
 - binary pulsars
 - mergers of black holes
 - "starquakes" in neutron stars
- Two installations: in Louisiana (Livingston) and Washington State
 - Other projects: Virgo (Italy), GEO (Germany), Tama (Japan)
- Instruments are designed to measure the effect of gravitational waves on test masses suspended in vacuum.
- Data collected during experiments is a collection of time series (multi-channel)

Gravitational wave detection

LIGO: (Laser Interferometer Gravitational-Wave Observatory)

- Aims to detect gravitational waves predicted by Einstein's theory of relativity.
- Can be used to detect
 - binary pulsars
 - mergers of black holes
 - starquakes" in neutron stars
- Two installations: in Louisiana (Livingston) and Washington State
 - Other projects: Virgo (Italy), GEO (Germany), Tama (Japan)
- Instruments are designed to measure the effect of gravitational waves on test masses suspended in vacuum.
- Data collected during experiments is a collection of time series (multi-channel)

Pulsars discovered 50 years ago now observed as spiralling pair

pegasus.isi.edu

Effective sharing embracing diversity

- Many **autonomous** organisations most engaged in many challenges
- Cluster of very long research campaigns
- Scale and scope determined by challenges
- Every form of diversity plus **global** four Vs for Humans!

Effective sharing embracing diversity

- Many **autonomous** organisations most engaged in many challenges
- Cluster of very long research campaigns
- Scale and scope determined by challenges
- Every form of diversity plus **global** four Vs for Humans!

Reaches scale and breadth for *long-term* clusters of campaigns tackling global and societal challenges

business drives *rapid* change in heterogeneous digital environment

Effective sharing embracing diversity

• Many **autonomous** organisations most engaged in many challenges

• Cluster Darwinian camp challenge to research campaigns

- Scale and scope determined challenges
- Every form of diversity plus **global** four Vs for Humans!

Reaches scale and breadth for *long-term* clusters of campaigns tackling global and societal challenges

business drives *rapid* change in heterogeneous digital environment

Gaining allegiance incrementally

- Many individuals, roles and priorities
- Established practices plus innovation
- Fair as well as FAIR
- Data, Information, Knowledge, Visualisations, Judgement, Methods, Cultures, Professional practices, QA, Digital platforms, Observational systems, Archives, Computational models, Networks, VREs, Stores, Scientific databases, Ethical rules, Collaboration agreements, DMPs, FAIR, ...

Gaining allegiance incrementally

- Many individuals, roles and priorities
- Established practices plus innovation
- Fair as well as FAIR
- Data, Information, Knowledge, Visualisations, Judgement, Methods, Cultures, Professional practices, QA, Digital platforms, Observational systems, Archives, Computational models, Networks, VREs, Stores, Scientific databases, Ethical rules, Collaboration agreements, DMPs, FAIR, ...

Gaining allegiance incrementally

- Many individuals, ro
 Many individuals, ro
 harnessed via Integrated understandable controllable abstractions
- Fair as well as FAIR
- Data, Information, Knowledge, Visualisations, Judgement, Methods, Cultures, Professional practices, QA, Digital platforms, Observational systems, Archives, Computational models, Networks, VREs, Stores, Scientific databases, Ethical rules, Collaboration agreements, DMPs, FAIR, ...

Building collaboration

without

losing human talent

DARE

17

Tripos: Flexible Federation Framework (F3)

- 95% professionals 95% time + students + citizen scientists
- Want to keep running their well-developed *research* methods with *their* improvements
- Would like to do more with less effort and faster if possible
- Would like more certainty about the reliability and value of their work
- Worried that imposed changes or collaborators will disrupt their campaigns
- Willing to be helpful and learn new things as long as it doesn't disrupt their work
- 1000s in research campaigns; 100s of specialisms & 10s of disciplines

- Small numbers of mainly experienced professionals some with specialist skills
- Want to keep running their well-developed operational methods with their improvements
- Would like to do more with less effort and faster and cheaper if possible
- Would like more certainty about the reliability and value of their work
- Worried that things may go wrong while they are in charge
- Have to handle emergencies and maintain long-term stability and gain from trends
- Support all roles in the community and report to stakeholders and governance

- 5% of community; research leaders to students; specialists in particular aspects
- Want to solve major challenges and advanced the state of the art
- Want to deliver new capabilities and exploit new opportunities
- Want to repair known weaknesses in the infrastructure, practices or research
- Want to explore freely and not suffer if they don't succeed
- Some have to contribute in emergencies and sustain a long-term strategy
- Expect review of their successes leading to credit, blame and impact

- External and internal colleagues, with any role and viewpoint: collaborator, rival, sceptic
- Valid review of scientific quality and method
- Threat to reputation, career and community's sustainability
- May expose weaknesses in the organisation, infrastructure, practices or approach
- and weaknesses in any individual entity or collection of entities
- While science should be open there are contexts that need protection from unfair criticism
- Long-term and in-depth study will need resources and (partially automated) support

- One or more bodies drawn up from representative stakeholders with access to experts
- Establishing the moral, ethical, and academic ethos and agreed ways of achieving it
- Selecting who to trust and what to trust them with; assigning and monitoring responsibilities
- Meeting the legal and regulatory requirements in each jurisdiction where the federation operates
- Recognising the policies of funders, users and their stakeholders and participant organisations
- Negotiating agreements where these clash
- Propagating the resulting 'rules' with clarity to all humans and systems with automated support
- Conducting investigations for appeals and to assess their success

Lingua Franca spanning roles: human & machine

Lingua Franca spanning roles: human & machine

Universes of Discourse

RE

RE

RF

RF

Support social structure

Diversity of working practices

DARE

Controls for production + freedom for innovation

Managing change to limit disruption with protection and incremental adoption

Variations through time

Take home messages

- Empower human responsibility and control
- Value diversity and build for it
- Mirror human structures
- Accommodate organisational autonomy
- Nurture innovation while retaining established practices
- Invest in sustaining collaborations and methods
- You can't dodge complexity our world is complex
- But sustain manageable niches and eliminate technology intrusion

Take home messages

- Empower human responsibility and control
- Value diversity and build for it
- Mirror human structures
- Accommodate organisational autonomy
- Nurture innovation while retaining established practices
- Invest in sustaining collaborations and methods
- You can't dodge complexity our world is complex
- But sustain manageable niches and eliminate technology intrusion

Encourage innovation and adoption of advances

do not

impose change or uniformity

Thank you!

Your questions please

Visit Edinburgh **IWSG 2018**

13-15 June 2018

Acknowledgements

Colleagues

Rosa Filgueira, Iraklis Klampanos, Christian Pagé, Alessandro Spinuso, Luca Trani **Projects**

UK e-Science, ADMIRE, VERCE, ENVRI, ENVRIPIUS, SKA-link, DARE

Bibliography

50 years observing Pulsars Jocelyn Bell-Burnell <u>https://www.rse.org.uk/event/fifty-years-of-pulsars-pulasting-radio-stars/</u> 50 years avoiding unnecessary complexity Edsger Dijkstra "*Go To Statement Considered Harmful*", CACM, **11** (3),

147-148, 1968. doi:<u>10.1145/362929.36294</u>7

Pegasus' role in gravitational wave detection https://pegasus.isi.edu/tag/ligo/

Accommodating commercial realities http://www.delaat.net/dl4ld/index.html

M.P. Atkinson, S. Gesing, J. Montagnat and I. Taylor, *Scientific Workflows: Past, Present and Future*, FGCS, 75, 216–227, 2017.

R. Filgueira, A. Krause, M.P. Atkinson, I. Klampanos and A. Moreno, *dispel4py: A Python Framework for Data-Intensive Scientific Computing*. In Int. J. of HPC Apps, vol. 31, no. 4, pp. 316-334, 2016

C.S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, J. I. van Hemert, *Scientific workflows: Moving across paradigms*, ACM Comput. Surv. 49 (4) (2017) 66:1–66:39. doi:10.1145/3012429.

A. Spinuso. *Active Provenance for Data-Intensive Research*, PhD thesis, School of Informatics, University of Edinburgh, to be submitted, 2018.

L. Trani, M. Koymans, M.P. Atkinson, R. Sleeman and R. Filgueira. *WFCatalog: A catalogue for seismological waveform data*, Computers Geosciences 106; 101 – 108, 2017.

L. Trani, M.P. Atkinson, D. Bailo, R. Paciello and R. Filgueira. *Establishing Core Concepts for Information-Powered Collaborations – pioneered by solid-Earth sciences*, submitted 2017.