
DARE-777413 Public D3.5

31/12/2018

 Page | 1

H2020-EINFRA-2017

EINFRA-21-2017 - Platform-driven e-infrastructure innovation
DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

 D3.5 - DARE API I

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D-3.5 DARE API I M12

Work package WP3: Large-scale Lineage and Process Management

Tasks involved T3.3: User-driven Control enabling API

Type
DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2018

Submission Date 31/12/2018

Status Draft

Editor(s)
Antonia Tsili (NCSRD), Iraklis Klampanos (NCSRD), Alessandro Spinuso
(KNMI)

Contributor(s)
Federica Magnoni (INGV), Amy Krause (UEDIN), Rosa Filgueira
(UEDIN), Xavier Pivan (CERFACS), Christian Pagé (CERFACS), Antonis
Koukourikos (NCSRD)

Reviewer(s) Malcolm Atkinson (UEDIN)

DARE-777413 Public D3.5

31/12/2018

 Page | 2

Document description
Implementation of the DARE software API, ready to be introduced in
the integrated DARE software stack

Document Revision History

Version Date Modifications Introduced

Modification Reason Modified by

1 21/11/2018 Initial version Antonia Tsili (NCSRD)

2 23/11/2018 PE registry information
and documentation
annex

Iraklis Klampanos (NCSRD)

3 30/11/2018 Initial version of generic
PEs

Amy Krause and Rosa
Filgueira (UEDIN)

4 3/12/2018 ENES PEs Xavier Pivan (CERFACS)

5 3/12/2018 EPOS PEs Federica Magnoni (INGV)

6 6/12/2018 Components and
Datasets registries
specification

Antonia Tsili (NCSRD) and
Antonis Koukourikos
(NCSRD)

7 10/12/2018 Minor corrections on
types and descriptions
of PEs

Antonia Tsili (NCSRD)

8 28/12/2018 Internal review Malcolm Atkinson (UEDIN)

9 31/12/2018 Finalisation Iraklis Klampanos (NCSRD)

DARE-777413 Public D3.5

31/12/2018

 Page | 3

Executive Summary
This reports on the current version of DARE platform’s software and services APIs, collectively referred
to as the DARE API. Programmatic access to DARE services is offered via two discrete channels: a library
of dispel4py processing elements (PEs) and via accessing RESTful and semantic catalogues. In
accordance with the Architecture principles of D2.1, the DARE API progresses towards achieving a
Common Conceptual Core Catalogue via federating over existing as well as new catalogues. The
Datasets and PEs parts of the catalogue contain elements directly associated with the IS-ENES and EPOS
use-cases, in line with WP7 and WP6 requirements.

DARE-777413 Public D3.5

31/12/2018

 Page | 4

Table of Contents

Introduction 6

Approach and Relationship with other Work Packages and Deliverables 6

Methodology and Structure of the Deliverable 6

dispel4py interface 6

Generic PEs 7

Provenance Type 12

Provenance Configuration 13

EPOS PEs 13

ENES PEs 17

Interfaces to DARE Registries 18

dispel4py PE Registry 19

Components Registry 19

Container Technology 19

Schema 19

Data Registry 19

Schema 19

Conclusions 20

APPENDIX 21

A Top level of the PE Registry API documentation 21

B Schema of Software Components Catalogue 28

List of Terms and Abbreviations
Abbreviation Definition

REST Representational State Transfer

API Application Program Interface

EPOS European Plate Observing System

ESGF Earth System Grid Federation

IS-ENES Infrastructure for the European Network for Earth System

EOSC European Open Science Cloud

DARE-777413 Public D3.5

31/12/2018

 Page | 5

DARE-777413 Public D3.5

31/12/2018

 Page | 6

1 Introduction

This reports on the current version of DARE platform’s software and services APIs, collectively referred
to as the DARE API. Programmatic access to DARE services is offered via two discrete channels: a library
of dispel4py processing elements (PEs) and via accessing RESTful and semantic catalogues. These
programmatic services cover many aspects of the platform. The dispel4py interface makes available the
PEs catalogue, which will enable the development of domain-specific user-facing tools and scientific
experiments. Other catalogues offer programmatic access to data provenance records, the software
components DARE has access to, known datasets, etc.

1.1 Approach and Relationship with other Work Packages and Deliverables

In accordance to the Architecture principles of D2.1, the DARE API progresses towards achieving a
Common Conceptual Core Catalogue via federating over existing as well as new catalogues. The API of
the platform in progress introduces users to an interface through which they can access a Thing as
expressed in D2.1 representing any component stored in the the overall logical catalogue. The
constituent registries (or catalogues), namely the dispel4py PEs registry, the Software components
catalogue and the Datasets catalogue are being integrated by WP4. The Datasets and PEs parts of the
catalogue contain elements for the implementation of the IS-ENES1 and EPOS2 use-cases, in line with
WP7 and WP6 requirements.

1.2 Methodology and Structure of the Deliverable

This Deliverable covers the two points of programmatic interfacing offered by DARE: the dispel4py

interface and the programmatic access of the DARE catalogues. The dispel4py API includes generic as

well as domain-specific PEs, aligned with the IS-ENES and EPOS requirements. Moreover, the

connection of dispel4py interface and data provenance is explained. In addition to dispel4py, we

provide the APIs to the rest of the DARE catalogues, as they are currently implemented. These

catalogues include the PEs registry, the Software components catalogue as well as the Datasets

catalogue. Programmatic access to provenance records is also provided the via ProvenenceType,

which is also presented below.

2 dispel4py interface

The DARE platform aims to ease the orchestration of persistent computational services and the
establishment of high-throughput data channels between them. This is achieved by creating stream-
based workflows and establishing connection interfaces between the main operators through which
data is either consumed or forwarded to output, called processing elements (PEs). In DARE, these PEs

1 IS-ENES

2 EPOS

https://portal.enes.org/ISENES2/project
https://www.epos-ip.org/

DARE-777413 Public D3.5

31/12/2018

 Page | 7

are described in the PEs registry. Below we provide the PEs that form the programmatic interface to
DARE’s dispel4py, organised in generic ones and in domain-specific. The PEs represent high-level
operations abstractly, so that multiple implementations and mappings are possible. The data flow
between PEs consists of sequences of data units. This permits optimisation such as direct data transfer,
pipelining and parallelisation over varying and heterogeneous e-Infrastructures.

In the API descriptions below “a” denotes an abstract type of input or output data as a single stream,
while “[a]” is the same type of data distributed in a vector of streams.

2.1 Generic PEs
In the following tables we declare PEs used in generic context that are separated according to their
functionality.

PEs that define various mechanisms for splitting the sequence of data units on an incoming stream into
a sequence of data units distributed across a vector of output streams.

Package Name Description Input
Connections

Output
Connections

generic split The incoming stream is
distributed across the
outputs in any manner the
implementation of
dispel4py chooses. This will
normally be round robin or
random but the encoded
scientific method does not
require a specific
distribution.

a [a]

generic split_round_robin The first arriving data unit
is despatched to
outputs[0] and the next to
outputs[1], and so on until
a data unit is despatched
to outputs[n-1],
where there are n output
streams, and then the
despatches sweep from
outputs[0] onwards again.

a [a]

generic split_random The implementation uses a
random number generator
to distribute data units
over the n output streams,
with an approximately

a [a]

DARE-777413 Public D3.5

31/12/2018

 Page | 8

equal number being
despatched on each
stream. A seed may be
supplied to achieve
repeatability during
debugging.

generic split_by_group The incoming data units
are assigned to output
streams according to the
group in which they fall,
c.f. the group by operation
of relational algebra. An
attribute of the data unit
or a discriminating
function operating on the
data unit as a whole needs
to be specified to identify
the group. Normally there
is one group per value that
occurs in the attribute, or
is yielded by the function.
However, the range of
permitted values may be
specified. In which case the
data units that yield a
value not in the range are
sent to one of two reject
streams, aboveTop or
belowBottom, to
distingush two kinds of
failure.

a [a]

generic split_by_bucket This is as split by group,
but a sequence of ranges
for the value yielded from
each data unit are also
supplied in the order of the
output streams. If the
yielded value falls into the
first range the data unit is
despatched on outputs[0],
for the second range on
outputs[1] and so on. If the
yielded value does not

a [a]

DARE-777413 Public D3.5

31/12/2018

 Page | 9

match any range the data
unit is despatched on one
of two reject streams,
aboveTop or belowBottom,
to distingush two kinds of
failure.

generic split_by_demand This attempts to balance
the quantities on each
output stream with the
capacity of the processing
capacity down stream. It
starts like
split_round_robin but if
the output streams buffers
are filling, then it
despatches more data
units to those that have
fewer data units unpro-
cessed in their output
buffers. This requires a
mechanism for a PE to
interrogate the state of the
output buffers.

a [a]

PEs that define various mechanisms for merging the sequences of data units on incoming streams into
a sequence of data units on one output stream.

Package Name Description Input
Connections

Output
Connections

generic merge The incoming streams are
combined to form one
output stream in any
manner the
implementation of
dispel4py chooses. This
will normally be round
robin or on arrival but the
encoded scientific method
does not require a specific
order.

[a] a

DARE-777413 Public D3.5

31/12/2018

 Page | 10

 merge_round_
robin

Take the first data unit
from inputs[0], the next
from inputs[1] and so on,
wrapping around to
inputs[0] after taking a
data unit from inputs[n-1].
This will preserve order if
used in conjunction with
split_round_robin
provided the intermediate
processing has not
removed or inserted data
units or changed the
stream order.

[a] a

generic merge_on_ arrival Take the first data unit
from the first stream that
delivers one, and continue
roughly in arrival order.
This avoids delays awaiting
the slowest path, but the
order of data units has no
logical basis.

[a] a

generic merge_sorted This is provided with an
extra parameter, e.g. a
function or a conditional
expression to map to a
function, that takes two
data units and yields true
if the first argument
should precede the
second. It assumes that
each input stream is
already ordered according
to that predicate. It then
waits until every stream
that will produce a data
unit has produced one,
and sends the first data
unit according to that
ordering to the output.
That data unit will be
replaced by its stream. The
process continues until all

[a] a

DARE-777413 Public D3.5

31/12/2018

 Page | 11

of the input streams have
signalled ’end_of_stream’.
Note that this can only be
used with continuous
streams if the data items
are intrinsically
ordered, e.g. by
timestamp, otherwise the
stream needs to be
divided into batches for
sorting before
merge_sorted.

generic merge_sorted_
distinct

This is logically equivalent
to merge_sorted except
that data units that have
equal value under a
supplied or default
equality test are
represented by their first
arrival, the remainder are
discarded.

[a] a

generic merge_
concatenated

This takes all of the data
units on inputs[0] and
sends them to output.
When that stream yields
an ’end_of_stream’ signal
it then copies all of
the data units in inputs[1]
in their arrival order and
so on. When it has copied
inputs[n-1] to output it
sends its ’end_of_stream’
signal. Note that this
means that each subgraph
feeding one of the inputs
can be activated in
succession and terminated
when it has completed.

[a] a

DARE-777413 Public D3.5

31/12/2018

 Page | 12

PEs that define mechanisms for chopping sequences of data units on an input stream into a sequence
of batches of data units on an output stream and to do the inverse.

Package Name Description Input
Connections

Output
Connections

generic batch The input stream is
partitioned into a
sequence of batches of
length m where m is
supplied as a parameter.
The batches will be
emitted on output with
batch start and end
markers so that it is not
necessary to hold a whole
batch in memory. The last
batch will normally hold
fewer than m items.

a a

generic unbatch This removes the outer
level of batch markers,
effectively concatenating
the batches on input to
one sequence of data units
on output.

a a

2.2 Provenance Type

A workflow is a program that combines atomic and independent processing elements (PEs) via a
specification language and a library of components. More advanced systems adopt abstractions to
facilitate re-use of workflows across users' contexts and application domains. While methods can be
multidisciplinary, provenance should be meaningful to the domain adopting them. Therefore, dispel4py
offers portable specification of the mechanisms allowing the contextualisation of the provenance
produced. For instance, users may want to extract domain-metadata from a component or groups of
components adopting vocabularies that match their domain and current research, or tune the
granularity and precision of recording input to output dependencies. To allow this in dispel4py, we
introduce the concept of ProvenanceType. Types may be developed as Pattern Type and Contextual
Type to represent complex computational patterns and i/o dependencies respectively, and to capture
specific metadata contextualisations associated with the produced output data. Detailed
documentation of the ProvenanceType class and its methods is provided in the DARE project’s gitLab3.

3 https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

DARE-777413 Public D3.5

31/12/2018

 Page | 13

The same page also reports the description of a preliminary set of already implemented patterns types
that capture the lineage of processing elements, which may present different kinds of stateless and
stateful behaviours. The rationale for these choices is described with more detail in the DARE
Architecture and technical positioning deliverable (D 2.1), where we also introduce the need to model
additional provenance patterns. These aim at capturing interactive behaviours of the research-
developers when they are developing, classifying and invoking their methods during research sessions
targeting a specific task. The provenance patterns will be shaped by the forthcoming refinement and
implementation of the DARE API, in cooperation with WP2 and WP4.

2.3 Provenance Configuration

To enable the user of a data-intensive application to configure the attribution of provenance types,
domain’s semantics and provenance-driven operations, we introduce in the framework the concept of
Provenance Configuration. With the configuration users can specify several properties, such as user’s
attribution, provenance types, provenance clusters, provenance sensors (experimental setups that
allow PEs to read and process provenance data within the workflow itself to trigger steering actions),
selectivity and transfer rules. The configuration is used at the time of the initialisation of the workflow
to prepare its provenance-aware execution. We consider that a chosen configuration may be influenced
by personal and community preferences, as well as by rules introduced by institutional policies. For
instance, a Research Infrastructure (RI) may indicate best practices to reproduce and describe the
operations performed by the users exploiting its facilities, or even impose requirements which may turn
into quality assessment metrics. This could require users to choose among a set of contextualisation
types, in order to adhere to the infrastructure's metadata portfolio. Thus, a provenance configuration
profile plays in favour of more generality, encouraging the implementation and the re-use of
fundamental methods across disciplines, taking into account the relevance of the provenance
information to the domain and to the stage method development has reached. Aspects concerning the
contextualisation of the lineage are developed to reflect architectural principles (D 2.1). We foresee
that many properties of the configuration will be inferred from the DARE catalogue by analysing the
user’s profile and the characteristics of the PE. This would foster the automatic setup of the provenance
profile or the provision of targeted recommendations, leaving a user or research-developer in overall
control.
The API method supporting configuration is reported as configure_prov_run in the project gitLab4.

2.4 EPOS PEs

Package Name Description Input Connections Output Connections

EposPilot code_sel select the simulation
code

list of available codes

[<script>]

selected code

<script>

4 https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

DARE-777413 Public D3.5

31/12/2018

 Page | 14

EposPilot
.spec

code_par set the parameter file of
the code

python dictionary for
the values of the
parameters
{<parameter>:<value
>}

json and ascii file for
the code parameters

(file.json,file.txt)

EposPilot
.spec

mesh_sel select a mesh for the
simulation

list of available
meshes

[<mesh>]

ascii files for the
selected mesh

(file.txt)

EposPilot
.spec

model_sel select a seismic wave
speed model

list of available wave
speed models for the
selected mesh

[<wsm>]

ascii file for the
selected wave speed
model

(file.txt)

EposPilot
.spec

eqk_sel set the input file of the
seismic source based on
the selected earthquake

python dictionary for
the values of the
source parameters

{<parameter>:<value
>}

ascii file for the
selected earthquake
source

(file.txt)

EposPilot
.spec

stat_sel set the input file of the
seismic stations based
on the selected
receivers

python dictionary for
the values of the
station parameters

{<parameter>:<value
>}

ascii file for the
selected seismic
stations

(file.txt)

EposPilot launch launch the simulation

EposPilot
.spec

decompose launch the routine of the
code that decomposes
the mesh into chunks for
each computing
processor; then collect
the output

ascii files of the mesh
and of the code
parameters

(file.txt)

binary files of the
mesh partitioning

(binary_file)

EposPilot
.spec

generate launch the routine of the
code that generates the
specfem databases; then
collect the output

binary files of the
mesh partitioning
and ascii file of the
code parameters

(binary_file)

binary files
describing the wave
speed model
interpolated at the
mesh points

DARE-777413 Public D3.5

31/12/2018

 Page | 15

(binary_file)

EposPilot
.spec

solver launch the routine of the
code that runs the
solver;
then collect the output

binary files of the
wave speed model at
the mesh points,
ascii files of the code
parameters, of the
earthquake source
and of the seismic
stations

(file.txt,binary_file)

ascii files of the
seismogram; binary
files of the wave
propagation movies

(file.txt,binary_file)

EposPilot transf_sy transform the ascii
seismograms into seed
files and png images

ascii files of the
seismogram

(file.txt)

seed and png files for
the seismogram of
each component at
each seismic station

(seed_file,file.png)

EposPilot
.spec

gen_mov generate wave
propagation movies

binary files of the
wave propagation
movies

(binary_file)

file of the wave
propagation movie
(so far in .avi format)

(file.avi)

EposPilot
.spec

gen_kmz generate kmz files to
show simulation results

png files for the
seismograms; values
of the seismic source
parameters

(file.png)

kmz file showing the
output seismograms
on a map

(file.kmz)

EposPilot
.spec

store_simul store simulation output
and visualization with
related metadata

ascii, seed and png
files of the
seismograms; binary
files of the movie;
kmz file;
related metadata

(file.txt,seed_file,file.
png)

EposPilot dwl_ob download observed data
in a given time range

python dictionary for
the values of the
earthquake origin

seed files of the
observed
seismograms

DARE-777413 Public D3.5

31/12/2018

 Page | 16

time

{<eot>:<value>}

(seed_file)

EposPilot transf_ob transform the seed
seismograms into png
images

seed files of the
observed
seismograms

png files for the
seismogram of each
component at each
seismic station

(file.png)

EposPilot store_ob store observed data with
related metadata

seed and png files of
the observed
seismograms and
related metadata

(seed_file,file.png)

EposPilot process_data pre-process observed
and synthetic
seismograms and
produce corresponding
pictures

seed files of raw
observed and
synthetic
seismograms

(seed_file)

seed and png files of
processed observed
and synthetic
seismograms

(seed_file,file.png)

EposPilot
.ra

pgm_par calculate ground motion
parameters from both
observed and synthetic
seismograms

seed files of
observed and
synthetic
seismograms (raw or
processed)

(seed_file)

json files for ground
motion parameters

(file.json)

EposPilot
.ra

pgm_comp compare observed and
synthetic ground motion
parameters

json files with ground
motion parameters
both observed and
synthetic

(file.json)

json file for results of
misfit procedures

(file.json)

EposPilot
.ra

pgm_plot plot maps of peak
ground motion from
synthetics or observed
data (or a combination
of them)

json files with ground
motion parameters
both observed and
synthetic

(file.json)

png files of ground
motion maps

(file.png)

DARE-777413 Public D3.5

31/12/2018

 Page | 17

EposPilot
.ra

store_pgm store observed and
synthetic ground motion
parameters,
visualizations, results of
comparisons, related
metadata

json files with ground
motion parameters;
json files with results
of ground motion
misfit procedures;
png files of ground
motion maps

(file.json)

2.5 ENES PEs

Package Name Description Input Connections Output Connections

ENES
usecase

NetCDFProcessing wrapper for icclim
package. Perform
climate indice
calculation

python dictionary
with the requested
parameters
containing all the
necessary input for
icclim.indice function

{<parameter>:<value
>}

parameters from
python dictionary,
name and location of
netcdf produced and
the indice name

{[<parameter>],<na
me>,<location>,<ind
ex>}

ENES
usecase

StreamProducer process the json
files to generate
new input such as
the name of
intermediate
netcdf

json files from user
requests from
climate4impact
Portal

(file.json)

python dictionary
formatted to fit the
PE in ENES usecase
package

{<parameter>:<value
>}

ENES
usecase

NetCDF2xarray return an xarray
from a netcdf file

python dictionary
with file location or
URL of netcdf file and
the variable name

{<parameter>:<value
>}

xarray of the netcdf
file

{xarray}

ENES
usecase

ReadNetCDF read a netcdf file
or URL and return

python dictionary
with file or URL

return the time
vector and the

DARE-777413 Public D3.5

31/12/2018

 Page | 18

a numpy array for
the time and the
variable from
netcdf file

location of netcdf file

{<parameter>:<value
>}

variable matrix

{[<time>],[<variable>
]}

ENES
usecase

StandardDeviation perform standard
deviation on a 3D
array

3D array streamed
from previous PE

return a time serie of
the spatial standard
deviation from input
array

ENES
usecase

AverageData calculate the
spatial average on
3D array

3D array streamed
from previous PE

return a time serie of
the spatial average
from input array

ENES
usecase

CombineData Combine
streamed data
together to
perform a
calculation overall
these data
together

Several data
streamed from
previous PE

stream the data for
one PE

ENES
usecsase

ReturnPlot Create a figure for
time serie vector

time series of climate
variable streamed

png files with the
time series of climate
variable

(file.png)

3 Interfaces to DARE Registries

3.1 dispel4py PE Registry

The dispel4py PEs registry is exposed via a RESTful API adhering to the OpenAPI Specification and
Swagger tools, which offer a user-friendly and self-documenting interface. Through that interface, one
can find a set of resources, which include connections, function implementations, function parameters,
groups, literals, PE implementations, user groups, users and workspaces, and a list of possible actions
to apply on the resources. It is documented and all available methods are provided with a simple and
useful description. A top-level view of provided methods is provided as Appendix A.

3.2 Components Registry

The Components Registry interface connects DARE’s software parts with their semantic interpretation,
which allows for facilitated indexing and searching. Each software component is documented according

DARE-777413 Public D3.5

31/12/2018

 Page | 19

to a custom schema describing classes and relations that includes any detail essential to software
deployment in a containerised environment.

Container Technology
One aspect of the platform’s action regarding implementation techniques is the usage of container
technology. DARE is meant to include a diversity of software and physical resources that need to report
on operational details in order to make software distribution possible. Container deployment offers
this kind of potential providing the platform with uniformly shaped reports on operation.

Schema
We formed a schema describing the main characteristics of each software component, which serves
the purpose of developing that part of a software components’ catalogue and potentially facilitating
the platform’s contribution to processes’ and experiments’ optimisation potential regarding data load
and infrastructure. The idea behind such is the formation of an OWL-ontology based on information
gained through the inspection of the component’s operation so that each software component can be
stored and retrieved via a Virtuoso instance.

A view of the schema concerning the software components’ part f the catalogue can be found in
Appendix B.

3.3 Data Registry

Data included on DARE platform are currently intended to cover climate and seismic phenomena
provided by the two collaborating pilots5 of the project. We aim to provide support for datasets in
various forms and locations that are also protected by different licences and on which each person or
group has different rights. In order to store and organise such data loads, another custom schema was
created with an OWL-ontology describing each dataset in a high but also more low-level manner. That
way, the data part of the catalogue offers the ability to keep track of the available datasets and any
changes performed on them.

Schema
The schema describing the dataset entries is formed with reference to DCAT6 Vocabulary, which proved
extremely helpful in including all the information needed for keeping track of a dataset’s versions and
states, as well as ease of access and collection. Each instance is associated with a software component
in order to render a user or a service capable of acquiring the needed data. The aforementioned schema
follows the concept that was adopted for the Software Components’ one.

A view of the schema concerning the software components’ part f the catalogue can be found in
Appendix B.

5 EPOS, ENES
6 https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

https://gitlab.com/project-dare/dispel4py/blob/master/provenance_documentation.md

DARE-777413 Public D3.5

31/12/2018

 Page | 20

4 Conclusions

DARE platform aims to provide user-friendly tools to scientists whose fields and interests do not include
programming but also need to manipulate large distributed data and remote systems. The platform’s
API’s role is to instantiate the aforementioned user-friendly interface between user and a catalogue
that encapsulates a diversity of data, including experimental data, custom scripts and available software
tools. At this moment, our work is focused on the fields that are covered by WP2 and WP4 and in
collaboration with EPOS and IS-ENES projects. The current deliverable describes the first step to create
this type of catalogue with its parts discriminated. We intend to minimise exposed differences of access
to data from different sources in future iterations.

DARE-777413 Public D3.5

31/12/2018

 Page | 21

APPENDIX

A Top level of the PE Registry API documentation

DARE-777413 Public D3.5

31/12/2018

 Page | 22

DARE-777413 Public D3.5

31/12/2018

 Page | 23

DARE-777413 Public D3.5

31/12/2018

 Page | 24

DARE-777413 Public D3.5

31/12/2018

 Page | 25

DARE-777413 Public D3.5

31/12/2018

 Page | 26

DARE-777413 Public D3.5

31/12/2018

 Page | 27

DARE-777413 Public D3.5

31/12/2018

 Page | 28

B Schema of Software Components Catalogue

DARE-777413 Public D3.5

31/12/2018

 Page | 29

C Schema of Datasets Catalogue

