
DARE-777413 Public D3.7

31/12/2018

 Page | 1

H2020-EINFRA-2017

EINFRA-21-2017 - Platform-driven e-infrastructure innovation
DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

 D3.7 - Integrated Monitoring and Management Tools I

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D-3.7 Integrated Monitoring and Management Tools M12

Work package WP3: Large-scale Lineage and Process Management

Tasks involved T3.2, T3.3

Type
DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2018

Submission Date 31/12/2018

Status Draft – v5

Editor(s) Alessandro Spinuso (KNMI)

Contributor(s) Iraklis Klampanos (NCSRD)

Reviewer(s) Ioannis Foufoulas (ATHENA)

DARE-777413 Public D3.7

31/12/2018

 Page | 2

Document description
Overview of the first release of the Monitoring and Management tools
and services.

Document Revision History

Version Date Modifications Introduced

Modification Reason Modified by

1 20/11/2018 Monitoring Tools in the
first DARE release.

Alessandro Spinuso

2 28/11/2018 Dispel4py PEs registry Iraklis Klampanos

3 28/11/2018 Added sections 1.1 and
Conclusions

Alessandro Spinuso

4 29/12/2018 Sections re-
organisation

Alessandro Spinuso

5 31/12/2018 Internal review Ioannis Foufoulas

6 31/12/2018 Finalisation Iraklis Klampanos

Table of Contents

1 Introduction 3

1.1 Approach and relationship with other Work Packages and Deliverables 3

2 MVV - Monitoring and Validation Visualiser 3

2.1 Monitoring 4

2.2 Discovery of Experiments and Data 4

2.3 Data Dependencies Navigation 5

2.4 Preview and Staging 5

3 BDV - Bulk Dependencies Visualiser 6

4 Processing Elements Registry Interface 7

5 Source Code and Deployment 8

6 Conclusions 8

List of Terms and Abbreviations
Abbreviation Definition

MVV Monitoring and Validation Visualiser

BDV Bulk Dependencies Visualiser

PROV W3C Standard for Provenance Representation

S-PROV PROV extension for lineage representation of of
streaming operators.

DARE-777413 Public D3.7

31/12/2018

 Page | 3

1 Introduction

This is a short report on the Monitoring and Management tools included in the first deployment of the
DARE platform. The lineage exploration tools have been improved with additional search capabilities
that take into account the conceptual contextualisation of data and processes. The underlying service
layer is based on a REST API. This has been described in an internal deliverable (ID-3.2) and it is currently
going under further improvements. The API will be thoroughly illustrated in the Data Lineage Service
deliverable at M18. The document reports also the preliminary implementation of a workflow
components’ registry, which is integrated with the dispel4py library.

1.1 Approach and relationship with other Work Packages and Deliverables

In alignment with the architecture’s principles expressed in D2.1, the lineage queries have been
extended with the support of high level Concepts, as additional search parameter. Concepts’ belong to
a certain domain and application namespace and further describe methods and data. Their definition
will be managed by the DARE API and Catalogues.

In cooperation with WP5, the containerisation of the S-ProvFlow system, offering the tools described
in this report, has been improved to allow a sound deployment within the DARE test-bed. This will also
facilitate the realisation of a continuous integration solution.

The population of the S-ProvFlow repository of workflows’ execution lineage is performed through the
dispel4py.provenance module. It offers the developers the possibility of implementing Provenance
Types and using them within a Provenance Configuration for a particular execution of a workflow. This
is described in D3.5 as part of the current DARE API.

The Processing Element Registry is developed in cooperation with WP2 and WP4 and it will be further
extended to cover the architectural principles, according to agreed priorities.

2 MVV - Monitoring and Validation Visualiser

The S-ProvFlow system offers a visual tool (Monitoring and Validation Visualiser - MVV), that enables
different sorts of operations through the interactive access and manipulation of the lineage
information. These include monitoring of the progress of the execution, discovery of data and runs,
filtering, data preview, download and staging. Below we cover each of these aspects separately. The
visual components of the tool illustrated in the following sections are shown in Figure 1.

DARE-777413 Public D3.7

31/12/2018

 Page | 4

Figure 1: Combined access to a workflow execution’s lineage. The Activity Monitor shows the list of active processes
performing the workflow activities. It displays feedback messages, quantity of data produced, last event’s timestamp and
whether any change occurred in the process implementation or parametrisation. The Data Dependencies Graph offers
interactive access to data dependencies. Yellow circles indicate that the provenance entity links to a concrete data resource
such a file or an image. Arrows represent the wasDerivedFrom relationship (in PROV term) between data. Metadata are
visible in the Data Products panel. The interface also allows the selective export of the lineage to PROV compliant formats,

according to the S-PROV ontology (an extension of PROV for data-intensive provenance), available at:

https://gitlab.com/project-dare/s-ProvFlow/blob/master/resources/s-prov-o.owl

2.1 Monitoring

The Activity Monitor, displays the activity of the workflow after it has been mapped to the target
resource. The view can be updated at runtime and its content is dynamically fetched from the
underlying Lineage API, according to the user’s position within the scrollable area. This allows users to
easily browse through the items.

The list shows the timestamp of the most recent invocation of a workflow’s process instance, the count
of the data produced, occurrence of runtime messages, such as errors, warnings or special textual
annotations coming from the live computation. Runtime changes affecting the instances are highlighted
reporting their total count. Clicking on one of the list’s items loads the information of the generated
data in the Data Products panel, for visualisation and further operations, as we will describe in the
sections below.

2.2 Discovery of Experiments and Data
Users can search for workflow executions and data elements adopting terms which refer to standard
vocabularies, as well as experimental terms introduced by specific application’s and researchers’

https://gitlab.com/project-dare/s-ProvFlow/blob/master/resources/s-prov-o.owl

DARE-777413 Public D3.7

31/12/2018

 Page | 5

requirements. Searching for workflows’ executions, Figure 2, allows them to configure the MVV tool
for the exploration of a specific workflow run. Once the run is selected and the MVV prepared to access
its provenance, users can search for data in the Data Products panel or apply filters on the data already
listed. Here, each data product is described by its metadata and the information about its generating
process. The selection of the terms for the searching is assisted through hints (see Figure 2). These are
suggested among the terms introduced by the user or research-developer when preparing the
workflow for provenance extraction (see D3.5).

Figure 2: Workflows’ Runs search panel. This panel is used to discover runs of interest based on parameters and metadata
values-ranges and on Concepts defined in the application domain namespace. As shown in the example, Concepts are
expressed as values of the prov:type, for the data produced (clipc:Pre-processed). and to characterise the belonging of
workflow components to conceptual Clusters (clipc:Combiner). In the dropdown list, we show that metadata query terms
can be either qualified (seis:station, seis:magnitude) or experimental (seq_idx). The terms are further described by their Use
(parameters or metadata), their primitive type and the total count of their occurrence.

2.3 Data Dependencies Navigation
The Data elements returned by a search or a filter are examined within the Data Products panel. Each
data element can be analysed in detail, including the possibility to start the interactive exploration of
the data derivations, which is then performed within the Data Dependencies Graph panel. The
navigation is controlled by clicking on each data node. Users can configure the depth of each step to
rapidly expand the whole graph, which can span across multiple workflows execution, showing
evidence of the reuse of data produced in different sessions.

2.4 Preview and Staging
The Data Products panel allows users to gain detailed information on the workflow data and to invoke
operations on the data and its provenance. For stream-based data-intensive analysis, which is the main
focus of this tool, the data does not always correspond to a concrete file or resource. Especially in the
intermediate phases of a computation, data is volatile in most of the cases, therefore only described by
its domain and processing metadata. However, when the data is materialised, the tool facilitates
transfer operations across infrastructures, by generating staging scripts based on the data products
location. This can be applied to all data listed in the Data Products panel. Once the script is produced

DARE-777413 Public D3.7

31/12/2018

 Page | 6

its execution can be performed remotely (currently in GridFTP) by referencing the active user
certificate. This solution requires the underlying infrastructures to support delegation of data transfer
services, according to the granted authorisation credentials. Whether interoperable data-management
systems offered by the EOSC and EUDAT CDI, suh has B2STAGE or B2DROP, also allow delegation, these
could be easily integrated in our tool.

3 BDV - Bulk Dependencies Visualiser

The interactive features presented by the MVV are designed for in-depth analysis of large workflow
runs. To obtain comprehensive views for a single workflow execution or involving many runs and users,
we offer a different tool, the Bulk Dependencies Visualiser (BDV). It implements an approach to visual
analytics of the information captured by the S-PROV model that exploits radial diagrams, combined
with the Edge Bundles technique. The Bulk Dependencies Visualisers offers comprehensive views of the
provenance repository at multiple levels of granularity and for different kinds of expertise and roles. It
offers facilities to tune and organise the views.

Figure 3: BDV - collaborative interactions among users and workflows. The diagrams are obtained by searching for runs that
involved data that have metadata values within specific ranges and by applying different grouping rules: (a) by username
and (b) by workflowName. Vertices represent workflows’ run ids and edges indicate whether any data has been exchanged
among runs (green and red edges represents respectively output and input). Vertices’ colour are associated with the user
that executed the workflow. The image (b) is obtained by requesting the logical conjunction (AND) of the metadata values-
ranges describing the workflows’ data.

We consider two classes of usage. In a first scenario the visual analytics approach can produce views
related to a single run, while in a second scenario, see Figure 3, users can visually explore the
interactions and data-reuse between users and workflows. Groping rules can organise the views in
clusters according, for instance, to the computational resources involved or according to other entities
and properties of the S-PROV model. The implementation of the BDV is realised using D3.js, a
programmable visualisation toolkit. The functionalities and usability of this experimental tool will be

DARE-777413 Public D3.7

31/12/2018

 Page | 7

refined in alignment to the DARE use cases. At this stage we have implemented the support of creating
visual cluster by Concept, according to the Architecture’s specifications.

4 Processing Elements Registry Interface

The dispel4py processing-elements (PE) registry1 is a catalogue detailing the PEs (and workflows, due
to the composability of simple into more complex PEs) available to the users. The registry is designed
to store descriptions, typing information and implementation details, and it can be dynamically made
use of by the dispel4py system. The catalogue is exposed to the users primarily via a REST interface,
however, it also exposes an automatically generated graphical user interface which provides a unified
testing and documentation solution. Users can familiarise themselves with the REST API using the GUI,
while they can also use it to interrogate the live registry. Part of this GUI is appended at the end of this
document. The API exposed by the PEs Registry is described in more detail in deliverable D3.5. in Figure
4, we show the swagger-ui2 Interface for the API, automatically generated from its Swagger descriptor.

Figure 4: The PE’s registry Swagger Interface

1 https://gitlab.com/project-dare/d4py-registry
2 https://swagger.io/tools/swagger-ui/

https://gitlab.com/project-dare/d4py-registry
https://swagger.io/tools/swagger-ui/

DARE-777413 Public D3.7

31/12/2018

 Page | 8

5 Source Code and Deployment

The source code of the tools and services that have been introduced is available in the project’s GitLab
(S-ProvFlow3, Processing Elements Registry4).

They are currently deployed in the DARE test-bed and managed by WP5. The MVV and BDV is available
at http://snf-3480.ok-kno.grnetcloud.net/sprovflow-viewer/html/view.jsp

6 Conclusions

During this first year of project, the tools and services described in this deliverable have been refined
with several improvements in functionalities, bug fixes and deployment model. Improvements include
the implementation of an initial set of relevant design principles introduced by the DARE architecture,
that particularly interests the conceptual and semantic classification of the research artifacts, which has
to be captured in their provenance. The work will continue, in cooperation with WP2 and WP4,
addressing additional provenance and lineage management requirements, especially with the
incremental realisation of the DARE API and the mapping of dispel4py to additional enactment engines,
such as Exareme5. This will introduce new provenance exploitation patterns and will impact on the
current technical solution, which will be extended with the support of reusable provenance templates
and with the realisation of communication and translation interfaces between the different DARE
catalogues, towards a unified view.

3 https://gitlab.com/project-dare/s-ProvFlow
4 https://gitlab.com/project-dare/d4py-registry
5 http://madgik.github.io/exareme/

http://snf-3480.ok-kno.grnetcloud.net/sprovflow-viewer/html/view.jsp
https://gitlab.com/project-dare/s-ProvFlow/
https://gitlab.com/project-dare/d4py-registry
http://madgik.github.io/exareme/

