
DARE-777413 Public D4.7

31/12/2018 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.7 Integrated Software Stack & Semantic Registry I

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.5, T2.1, T3.2, T3.3, T3.4, T4.1, T4.2, T4.3, T4.4, T5.1
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2018

Submission Date 31/12/2018

Status Draft v1.0

Editor(s) Antonis Koukourikos (NCSR-D)

Contributor(s) NCSR-D, UEDIN, KNMI, ATHENA-RC

Reviewer(s) Federica Magnoni (INGV)

Document description

The report accompanies the software deliverable for the
Integrated Software Stack delivered by DARE.
It provides a short description on the rationale and state of the
integration and indicates links with work on other technical and
architectural packages. It also provides links to relevant code and
documentation.

Integrated Software Stack & Semantic Registry
I

DARE-777413 Public D4.7

31/12/2018 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

0.1 30/11/2018 ToC Antonis Koukourikos
0.5 07/12/2018 Sections 2 and 3 Antonis Koukourikos
0.7 14/12/2018 Section 4 Antonis Koukourikos
0.8 20/12/2018 Submitted for internal review Antonis Koukourikos
0.9 21/12/2018 Internal Review Federica Magnoni
1.0 31/12/2018 Final version to be submitted to the EC Mariana Markouli

DARE-777413 Public D4.7

31/12/2018 Page | 3

Executive Summary
The document serves as a summary of the technical developments towards the final DARE outcome,
the DARE integrated platform.
Reported results span across all tasks of Work Package 4, Big Data Processing and Analytics, where
most of technical work for individual constituents of the platform is carried out.
It also refers to results obtained from Work Package 3, Large-scale Lineage and Process
Management, mainly pertaining to the incorporation of provenance in the platform and the
establishment of API mechanisms for its various parts.
Finally, the report specifies the relationship and conformance of the platform to the architectural
design envisioned for the proposed DARE solution.
The whole integration process is designed to set relatively low barriers and limits for integrating
additional components and/or external resources. Hence the adoption of containerization and the
requirement initial metadata at a high level for the incorporation of a resource.
The design is expected to help technical work during the duration of the project as well as – and
more importantly – to constituting the platform extensible to further, different scientific and user
communities and adaptable to future evolutions in data science and e-infrastructures technologies.

DARE-777413 Public D4.7

31/12/2018 Page | 4

Table of Contents

1 Introduction .. 5

1.1 Purpose and Scope ... 5

1.2 Approach and relationship with other Work Packages and Deliverables 5

1.3 Methodology and Structure of the Deliverable ... 5

2 DARE Software Stack & Components ... 6

2.1 Core DARE Components ... 6
2.1.1 dispel4py ... 6
2.1.2 s-ProvFlow .. 7
2.1.3 SemaGrow ... 7
2.1.4 ExaSpark .. 7

2.2 Supporting DARE Components ... 7
2.2.1 Virtuoso... 7
2.2.2 d4py-registry ... 7
2.2.3 Components registry ... 7
2.2.4 BDI ... 7

2.3 Deployment Testbed .. 8

3 DARE Semantic Registries ... 9

3.1 Components Ontology ... 9

3.2 Data Ontology .. 9

4 Summary and Next Steps .. 11

List of Figures
Figure 1: High-level DARE Architecture ... 6
Figure 2: DARE Technical Overview ... 6
Figure 3: Components Ontology - Basic Entities .. 9
Figure 4: Data Ontology - Core Entities ... 10

List of Terms and Abbreviations

Abbreviation Definition
WaaS Workflows-as-a-Service
C4 Common Conceptual Core Catalogue
P4 Protected Pervasive Persistent Provenance
GDBMS Graph Database Management System
SQL Structured Query Language
RDF Resource Description Framework
PE Processing Element
Fraunhofer-SCAI Fraunhofer Institute for Algorithms and Scientific Computing
API Application Program Interface
FOAF Friend Of A Friend

DARE-777413 Public D4.7

31/12/2018 Page | 5

1 Introduction
The present document is an accompanying report to the first deployment of the DARE Software
Stack.

1.1 Purpose and Scope
The purpose of the report is to summarize the progress on the DARE platform, clarify decisions,
identify risks and critical points, and present the plan for the forthcoming months.
It provides links to relevant code repositories and documentation, places the rationale for creating
the Integrated Stack under the general approach of DARE and indicates the plan for evolving the
platform.

1.2 Approach and relationship with other Work Packages and Deliverables
D4.7, a direct deliverable of T4.5, DARE Software Stack Release, is the culmination of the technical
work in DARE, as it encapsulates the activities in multiple work packages and tasks towards an
integrated platform.
The blueprint for the Integrated Software Stack is provided by WP2 and specifically, D2.1, DARE
Architecture and Technical Positioning.
Resources and components pertaining to the physical layer used by the platform are made available
via work carried out in WP5 and are reported in detail in D5.1, Platform Infrastructure, Usage and
Deployment.
The distinct components incorporated in the Integrated Software Stack are developed, updated and
maintained in various tasks of Work Packages 3 and 4, namely:
T3.2 – Reproducibility and Lineage Services
T3.3 – User-driven Control-enabling API
T3.4 – Tooling Integration
T4.1 – Big Data Analytics Toolkit
T4.2 – Data-driven Abstraction Specification Toolkit
T4.3 – Data Consolidation and Linking Toolkit
T4.4 – Execution Mapping Services

1.3 Methodology and Structure of the Deliverable
The report accompanies a software deliverable comprising the components thus far incorporated
in the DARE platform, under the guidelines and design set by the DARE architectural principles. It
aims to showcase the conformance with the goals of the project and the designed architecture for
realizing these goals.
Section 2 presents a high-level technical overview and summarizes the components included in the
first deployment of the DARE software stack. Section 3 presents the high-level ontologies designed
for describing the respective components, as well as, a preliminary implementation of the ontology
that will be used to describe data assets to be handled by DARE. Section 4 reports on future steps,
foreseen risks and the respective mitigation measures.

DARE-777413 Public D4.7

31/12/2018 Page | 6

2 DARE Software Stack & Components
The section describes the current set of components integrated in the DARE platform. We can
distinguish between core components, which are implementations of the major architectural
elements of DARE, as described in deliverable D2.1, and supporting components, that encapsulate
required functionalities towards a functioning platform.

Figure 1: High-level DARE Architecture

From a technical standpoint (see Figure 2), C4 comprises a Federator module which is responsible
for accessing the underlying database where DARE-internal information is stored, as well as,
external collections and repositories of relevance to the use cases executed through DARE.
P4 communicates with WaaS to be informed about execution details that are included in the
respective provenance record and stored through the Federator in C4. Similarly, WaaS is informed
by C4 (again via the Federator) for invoking data and components that are required for the execution
of a given workflow.

Figure 2: DARE Technical Overview

2.1 Core DARE Components

2.1.1 dispel4py
dispel4py acts as the current implementor of the WaaS concept in the DARE architecture. It is used
to describe abstract workflows and enact them over diverse underlying infrastructures, taking care
of the distribution of the execution, its optimization and the orchestration of the different
components involved in the execution.
The repository hosting the latest implementation of dispel4py is accessible at:
https://gitlab.com/project-dare/dispel4py.
The master branch can be cloned from https://gitlab.com/project-dare/dispel4py.git

https://gitlab.com/project-dare/dispel4py
https://gitlab.com/project-dare/dispel4py.git

DARE-777413 Public D4.7

31/12/2018 Page | 7

2.1.2 s-ProvFlow
The component realizes the P4 component of DARE, responsible for collecting, preserving and
reporting on provenance information from the workflow execution over the platform. Details on its
functionality can be seen in the respective repository at: https://gitlab.com/project-dare/s-
ProvFlow.
Τhe master branch can be cloned from https://gitlab.com/project-dare/s-ProvFlow.git

2.1.3 SemaGrow
SemaGrow is the realization of the Federation engine for C4 in the first version of DARE.
The repository hosting the latest implementation of SemaGrow can be found at:
https://gitlab.com/project-dare/semagrow.
The master branch can be cloned from https://gitlab.com/project-dare/semagrow.git.

2.1.4 ExaSpark
ExaSpark is also part of the WaaS implementation within the DARE architecture. For more
information search the GitLab repository at: https://gitlab.com/project-dare/ExaSpark.
The master branch can be cloned from https://gitlab.com/project-dare/ExaSpark.git.

2.2 Supporting DARE Components

2.2.1 Virtuoso
Virtuoso, due to its maturity and flexibility, was selected as the GDBMS to be used for the DARE
platform. Virtuoso provides a hybrid server architecture for data access, virtualization, integration
and multi-model relational database management (SQL Tables and/or RDF Statement Graphs). In
the following link we provide a Docker image for the respective software component along with a
Dockerfile and a script for configuration: https://gitlab.com/project-dare/docker-virtuoso.

2.2.2 d4py-registry
Through d4py-registry, one can find a set of resources, which include connections, function
implementations, function parameters, groups, literals, PE implementations, user groups, users and
workspaces, and a list of possible actions to apply on the resources. The interface is documented in
order to ease the user’s experience and the implementation can be found at:
https://gitlab.com/project-dare/d4py-registry.
The master branch can be cloned from https://gitlab.com/project-dare/d4py-registry.git.

2.2.3 Components registry
The components registry is responsible for gathering and preserving information on the status and
availability of components deployed or accessible from the DARE platform. Its model and
communication with the deployment environment is summarized in section 3.1 of this document.
Information on the registry can be found at: https://gitlab.com/project-dare/components-registry
The master branch of the relevant Git repository can be cloned from https://gitlab.com/project-
dare/components-registry.git.

2.2.4 BDI
The Big Data Integrator platform is a customised, cloud-ready and modular integrator platform,
bringing together commercial and research, production-ready components for big-data analytics. It
offers an easy-to-deploy, easy-to-use and adaptable framework for the execution of big data
applications by exposing big data tools as ready-to-use Docker Compose files.
A list of applications provided by BDI is reported in D5.1, and indicatively includes technologies like
Hadoop, Spark, Flink, Kafka, GeoTriples, and others.

https://gitlab.com/project-dare/s-ProvFlow
https://gitlab.com/project-dare/s-ProvFlow
https://gitlab.com/project-dare/s-ProvFlow.git
https://gitlab.com/project-dare/semagrow
https://gitlab.com/project-dare/semagrow.git
https://gitlab.com/project-dare/ExaSpark
https://gitlab.com/project-dare/ExaSpark.git
https://gitlab.com/project-dare/docker-virtuoso
https://gitlab.com/project-dare/d4py-registry
https://gitlab.com/project-dare/d4py-registry.git
https://gitlab.com/project-dare/components-registry
https://gitlab.com/project-dare/components-registry.git
https://gitlab.com/project-dare/components-registry.git

DARE-777413 Public D4.7

31/12/2018 Page | 8

2.3 Deployment Testbed
For the first year of the project, DARE utilized infrastructures provided, prepared and maintained by
Fraunhofer-SCAI and GRNET, as reported in deliverable D5.1. The Docker images of the
aforementioned components, along with the services provided by the Big Data Integrator platform,
were deployed over the infrastructures.
The containers are managed and orchestrated via Kubernetes, which exposes information on the
status and availability of each container via its native API. The API is used for updating the relevant
entries in the Semantic Registry, as summarised in the following section.

DARE-777413 Public D4.7

31/12/2018 Page | 9

3 DARE Semantic Registries
The section provides an overview of our approach for conceptualizing at a generic level the
components incorporated in the DARE platform and the data assets to be handled by these during
the execution of workflows over the platform. It is expected that the core model will be extended
as the component collection is enriched or modified and specific data assets are requested by the
use cases.
Furthermore, an important part of the conceptualization task is the linking with existing ontologies
used by external repositories that are relevant to DARE. The linking will be carried out mainly on
demand (as data sources are identified by the use cases) and in some cases, proactively (links to
major Linked Data sources and widely used schemas like schema.org, FOAF, etc.).
All registries are part of the Federation controlled by SemaGrow in the C4 conceptual component
of the DARE architecture and are exposed through the appropriate APIs, as reported in deliverable
D3.5, DARE API.

3.1 Components Ontology
The main entity in the ontology is SoftwareComponent, which conceptualizes a generic software
entity deployable and usable within the platform. From an implementation point of view, the class
is not expected to have direct instances, as each software component will be an instantiation of a
specialization of the SoftwareComponent class (indicatively, a Database, a Filesystem, etc.).
In accordance with the DARE approach, all components are deployed as Docker containers. Thus, a
SoftwareComponent individual is related to its Container, an entity carrying the basic characteristics
that define an image. The container is hosted in a specific Host, from where it is actually accessible.

Figure 3: Components Ontology - Basic Entities

At the functional level, the information on the component registry is updated via the relevant
Kubernetes managers. Hence, a mapping between the metadata exposed by Kubernetes and the
Components ontology has been designed and can be found at:
https://gitlab.com/project-dare/components-registry/blob/master/kubectl-components-
mapping.docx
The ontology itself is available at:
https://gitlab.com/project-dare/components-registry/blob/master/components.owl

3.2 Data Ontology
The core entity of the ontology that conceptualizes data assets handled by DARE is the Dataset, that
entails generic information about the asset. Its origin is determined via a link to a Device entity,

https://gitlab.com/project-dare/components-registry/blob/master/kubectl-components-mapping.docx
https://gitlab.com/project-dare/components-registry/blob/master/kubectl-components-mapping.docx
https://gitlab.com/project-dare/components-registry/blob/master/components.owl

DARE-777413 Public D4.7

31/12/2018 Page | 10

which models at an abstract level data-producing equipment (e.g. seismometers), placed in a
specific Location.

Figure 4: Data Ontology - Core Entities

Further information that pertains to the rights and means for using the dataset is conceptualized as
instances of the Distribution and Access classes. Distribution provides technical information for the
dataset (format, type, size, etc.), while Access models licensing information and ways to consume
the data resource (access URL, download URL). Furthermore, it links the resource with the
SoftwareComponent (as defined in the Components ontology) that is able and expected to use the
dataset.
The OWL ontology that materializes the described schema is available through the relevant Git
repository of the project at:
https://gitlab.com/project-dare/data-registry/blob/master/Data_Schema.owl

https://gitlab.com/project-dare/data-registry/blob/master/Data_Schema.owl

DARE-777413 Public D4.7

31/12/2018 Page | 11

4 Summary and Next Steps
The present document summarizes the state of the DARE Integrated platform at the end of M12 of
the project. The core principles for the integration, as reported in section 2, are expected to remain
relatively stable throughout the duration of the project. The same holds for the overall technical
approach and technical project management in DARE. That is, all assets of the platform (code,
containerized components, ontologies, schemas, etc.) will be maintained as GitLab projects along
with their documentation.
These assets will however be continuously updated and calibrated as the use cases of the project
are executed and consequently extended and refined. It is probable that additional components,
new modules and more sophisticated and specialized schemas will be required in the forthcoming
periods. The Integrated Software Stack will be updated accordingly, and major changes will be
reflected in reports similar to this.

	1 Introduction
	1.1 Purpose and Scope
	1.2 Approach and relationship with other Work Packages and Deliverables
	1.3 Methodology and Structure of the Deliverable

	2 DARE Software Stack & Components
	2.1 Core DARE Components
	2.1.1 dispel4py
	2.1.2 s-ProvFlow
	2.1.3 SemaGrow
	2.1.4 ExaSpark

	2.2 Supporting DARE Components
	2.2.1 Virtuoso
	2.2.2 d4py-registry
	2.2.3 Components registry
	2.2.4 BDI

	2.3 Deployment Testbed

	3 DARE Semantic Registries
	3.1 Components Ontology
	3.2 Data Ontology

	4 Summary and Next Steps

