
DARE-777413 Public D3.3

31/07/2019 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

Data Lineage Services I

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D-3.3 Data Lineage Services I M18

Work package WP3: Large-scale Lineage and Process Management

Tasks involved T3.2, T3.3

Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 30/06/2019
Deadline extended to 31/07/2019 in agreement with PO

Submission Date 31/7/2019

Status Final Draft

Editor(s) Alessandro Spinuso (KNMI)

Contributor(s)

Reviewer(s) Christian Pagé (CERFACS)

Document description Overview of the first release of the Lineage Services.

DARE-777413 Public D3.3

31/07/2019 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

0.1 6/11/2018 Outline and inclusion of Lineage API Alessandro Spinuso
0.3 19/05/2018 Reorganisation and Extended Sections Alessandro Spinuso
0.8 28/06/2019 Section on S-PROV Model, Conclusions and

overall refinements
Alessandro Spinuso

0.9 15/07/2019 Internal Review Christian Pagé
1.0 23/07/2019 Addressed reviewer’s comments in Sections 2,3 Alessandro Spinuso

DARE-777413 Public D3.3

31/07/2019 Page | 3

Executive Summary
This document describes the current release of the DARE lineage service API, which is deployed in DARE
test-bed and used by the application workflows developed by WP6 and WP7. The activities on the API
conducted by WP3 focused on improving its documentation and deployment mode, besides developing
new methods and updating its software dependencies. Section 2 introduces the underlying provenance
model, derived by generic and common standards, while Section 3 describes the use cases and how
they map to the methods of the API. We have reported in another deliverable, D3.7 a collection of tools
already exploiting the web-service.

DARE-777413 Public D3.3

31/07/2019 Page | 4

Table of Contents

EXECUTIVE SUMMARY .. 3

1 INTRODUCTION .. 5

2 S-PROV: RESOURCE MAPPING AND STATEFUL OPERATORS .. 5

3 THE DATA-LINEAGE SERVICE ... 7

3.1 MANAGING DATA PROPERTIES TO ASSIST DISCOVERY .. 11

4 CONCLUSIONS AND FUTURE WORK .. 12

List of Terms and Abbreviations

Abbreviation Definition
PROV W3C Standard for Provenance Representation
S-PROV PROV extension for lineage representation of of

streaming operators.

DARE-777413 Public D3.3

31/07/2019 Page | 5

1 Introduction
Provenance and data-lineage information offer insights that interest different roles, from the domain-
scientists to the community manager. In data-intensive computations this information can be
overwhelming, hiding latent but significant evidence of a method’s effectiveness and efficiency towards
meeting required goals. The API offers ways of interactively accessing and visualising the provenance
according to general purpose use cases, offering detailed interactive navigation of single executions, as
well as tunable perspectives involving data, people and infrastructures across multiple workflow runs.
The API introduced in this report allowed the realisation of data-lineage exploration tools. These show
how computations can be monitored and evaluated interactively at different levels of detail, visually
combining computation and scientific metadata with users’ processes. The database technology and
the adopted representation proved sufficiently flexible to accommodate the rapid implementation of
the use cases. The underlying provenance model S-PROV, for data-intensive and stateful operations,
which we briefly describe in this deliverable, accommodates complex lineage patterns and represents
details about the mapping of the abstract workflow to its distributed and concurrent execution.

2 S-PROV: Resource Mapping and Stateful Operators
S-PROV, thanks to the explicit representation of stateful operations and of the distribution of the
computation, accommodates complex lineage patterns and represents details about the mapping of
the abstract workflow to its distributed and concurrent execution. The model, shown in Figure 1, is built
by importing and further specialising concepts introduced by the PROV1 data-model in combination
with ProvONE2. PROV is intended as a conceptual framework offering machine understandable
descriptions of records that describe with contextual metadata people, institutions, entities, and
activities involved in producing, influencing, or delivering a piece of information. In PROV, an Activity
informs another Activity by means of an exchange of information, which consists of the Entities that are
used and generated when accomplishing a specific task. Respectively they are associated with and
attributed to an Agent, who can perform or delegate the task to other agents. ProvONE, offers instead
an extension point to accommodate the provenance representation of more precisely characterised
workflow computational processes.

1 http://www.w3.org/TR/prov-dm/
2 https://purl.dataone.org/provone-v1-dev

DARE-777413 Public D3.3

31/07/2019 Page | 6

Figure 1: (a) S-PROV provenance model. Colour coding indicates the following: (grey) elements for abstract and prospective
provenance; (green) concrete workflow elements and state; (red) execution elements and fine grain dependencies.
Extensions of PROV and ProvONE are indicated for each class. (b) After the abstract workflow is deployed to the underlying
resources, each Component is mapped into several ComponentInstances that perform many Invocations to execute the
workflow task on the incoming data. Components and ComponentInstances are prov:Agents.

More specifically, while ProvONE represents the structure of a provone:Workflow as a graph of
interconnected entities of type provone:Program. These are executed according to the computational
model specified by a provone:Controller. In S-PROV we extend the description of the abstract workflow
by introducing a new class, Component (the abstract workflow step), which extends the basic PROV
class prov:Agent. In S-PROV, a Component delegates the execution of a program to multiple instances
of the program itself. We represent the instances in S-PROV by introducing a new class
ComponentInstance that extends the PROV class prov:SoftwareAgent. Making this semantics explicit
enables us to represent in the provenance traces detailed information about the execution of parallel
operators. Information includes updates to their internal state with intermediate and reusable data.
ProvONE, through the concept of provone:Workflow, which is also a program, and the relationship
provone:subprograms, offers support for workflow encapsulation, which is an important and reusable
feature of the model. Here the activity class of provone:Execution applies to workflows, as well as their
internal components. We extend this concept in order to differentiate between the execution of a
complete workflow and a simple process. The former is described by the class WFExecution the latter
by the Invocation of a ComponentInstance. During an invocation the relationships between the input
and output Data and the set of ComponentParameters values used by the specific instance are
established. The StateCollection contains references to the Data involved into stateful operations. It
provides a more precise representation of the derivations involving the data exchanged between
instances, as well as stateful and intermediate data generated and preserved within a single instance.
Finally, in S-PROV we combine system-level provenance with contextual information and metadata that

DARE-777413 Public D3.3

31/07/2019 Page | 7

are relevant to the users' interests and to the workflow's application domain, making provenance useful
for the scientists, as well as for the workflow developer and system experts.
S-PROV is available as ontology3 and is implemented in the MongoDB document-store adopting a
representation which offers performant query capabilities. This is achieved by applying techniques such
as denormalisation and a flexible indexing strategy for the metadata terms. We proceed now describing
the queries and use cases characterising the DARE Lineage Services.

3 The Data-Lineage Service
This section describes the current release of the DARE lineage services managing the data-lineage
information captured by the DARE platform, in combination with the dispel4py workflow system. Our
activities focused on consolidating the methods documentation and deployment of the API. The
methods of the API are built on top of the provenance model (S-PROV). The source code is available as
part of the S-ProvFlow master repository in the DARE GitLab4 and the service is deployed in the DARE
test-bed. Its specification follows the OpenAPI standard and is accessible to the public5. It can be
queried adopting standard OpenAPI clients:
https://petstore.swagger.io/?url=https://testbed.project-dare.eu/prov/swagger/#/
or with the dedicated interactive lineage exploration tools:
https://testbed.project-dare.eu/sprovflow-viewer/html/view.jsp.

We proceed with introducing the different lineage use cases envisaged by the DARE platform and how
these are implemented by the API. The single methods are illustrated in Table 1-3. We will refer to the
methods’ number in these tables in the description of the use cases.

Acquisition: Lineage information should be stored at runtime in order to allow users to monitor the
execution of their methods. Thus, as the computation progresses. method (1) of Table 1 is used by the
workflow application to send regular updates about the ongoing execution. Lineage documents are
ingested in JSON format. Each document describes the event associated with the production of new
output from one of the processes of the workflow. It contains timestamps, details about the generating
process, such as the workflow component, the location of the execution and data derivations. The latter
capture the wasDerivedFrom relationships between output and input data. Input are referenced by
their id, while output data is described in terms of its metadata and its location, whether the workflow
produced a materialised resource such as a file or an entry in a database. The acquisition methods have
been extended with a new import functionality (4). This allow to ingest provenance produced by
workflows represented and executed in CWL (Common Workflow Language), thereby producing
lineage information in CWLProv format6.

Detailed Monitoring: the execution of a workflow can be monitored at different levels of detail. From
the high-level classification of the components introduced by the users, grouped in semantic clusters,
to the invocation of the single components’ instances. This multi-level representation is supported by

3 https://gitlab.com/project-dare/s-ProvFlow/blob/master/resources/s-prov-o.owl
4 https://gitlab.com/project-dare/s-ProvFlow/tree/master/provenance-api
5 https://testbed.project-dare.eu/prov/swagger/
6 https://zenodo.org/record/1208478#.XOKep6bYVSw

DARE-777413 Public D3.3

31/07/2019 Page | 8

the underlying S-PROV model shown in Figure 1. This allows us to perform queries that obtain
automatically complete processing and attribution information. Details such as location, amount of
data produced, execution time and software agents are immediately collected and aggregated without
joins to follow references. The method of the API offering such functionality is number (6) of Table 2.
We will make use of this numbering schema to reference the API’s methods throughout the document.

Search for Runs and Data: the validation and traceability query methods of the API, referred as (5),
(10), (11), (16) in Table 2 perform searches on concepts and terms defined by the S-PROV model and
vocabulary, and on the terms associated with the properties of the DataGranules and
ComponentParameters (see Figure 1). These are used in combination with their values-ranges to search
for data and workflows’ executions.

Lineage Queries: the methods of the API referred as (12) (13) in Table 2, allow users to navigate the
data derivation graph (derivedData, wasDerivedFrom) bidirectionally. This is used to build a visual and
interactive representation of the trace and requires to specify how much depth should be extracted
from the lineage trace of the data. Another method that combines graph traversals at a configurable
depth with queries on metadata values-ranges is the filterByAncestor (11). It receives a list of data ids
and applies a filter excluding those whose ancestors’ properties do not match the query parameters.

Aggregations and Summaries: the API provides two high-level summary methods to extract
comprehensive information. One of the methods (15) covers processing dynamics, such as data transfer
between the components and their concrete instances, indicating additional details, such as the
computational nodes and execution modes, depending on the chosen enactment. Another method
instead (16) reveals collaborative dynamics, such as data-reuse between people, workflows and
infrastructures. These are built interactively by specifying properties of the data produced by the users’
runs. Capturing and visualising the reuse of workflows outputs across different methods is relevant to
trace the long tail of Science, where the data life cycle is affected by the combined interactions between
methods that improving the original data or create derivative products on a potentially large time scale.

Table1: S-ProvFlow API Methods Provenance acquisition

Provenance acquisition

(1) workflowexecutions/insert Bulk insert of bundle or lineage documents in
JSON format

(2) workflowexecutions/<id>/edit Update of the description of a workflow execution.
Users can improve this information in free text.

(3) workflowexecutions/<id>/delete Delete a workflow execution trace, including its
bundle and all its lineage documents.

(4) workflowexecutions/import Import lineage traces from other workflow systems
and maps them to S-PROV allowing their exploration
through the S-ProvFlow tools. The current
implementation supports the import of traces in
CWLProv.

DARE-777413 Public D3.3

31/07/2019 Page | 9

Table 2: S-ProvFlow API Methods Monitoring, validation and lineage queries

Monitoring, validation and lineage queries

(5) workflowexecutions(/<id> | ?<query
string>)

Extract documents from the bundle collection by
the id of a WFExecution or according to a query
string which may include usernames, type of the
workflow, the components the run
wasAssociatedWith and their implementations.
Data results’ metadata and parameters can also
be queried by specifying the terms and their min
and max values-ranges and data formats. Mode of
the search can also be indicated (mode ::= (OR |
AND). It will apply to the search upon metadata
and parameters’ values of each run.

(6)
workflowexecutions/<id>/showactivity?<query-
string>

Extract detailed information related to the activity
related to a WFExecution (id). The result-set can
be grouped by invocations, instances or
components and shows progress, anomalies (such
as exceptions or systems’ and users’ messages),
occurrence of changes in the implementation and
the rapid availability of accessible data bearing
intermediate results. This method can also be
used for runtime monitoring.

(7) instances/<id>
(8) invocations/<id>
(9) components/<id>

Extract details about a single invocation instance
or component by specifying their id. The returning
document will indicate the changes that occurred,
reporting the instances and the first invocation
affected.

(10) data(/<id> | ?<query string>) Extract Data and their DataGranules. The data is
selected by specifying the id or a query-string.
Query parameters allow to search by attribution
to a component or to an implementation, or by
the id of the workflow execution or of the
invocation that generated the data. In addition, it
is also possible to query by combining more
metadata terms with their min and max values-
ranges. Mode of the search can also be indicated
(mode ::= (OR | AND)).

(11) data/filterByAncestor?<query string>

Filter a list of data ids based on the existence of at
least one ancestor in their data dependency
graph, according to a list of metadata terms and

DARE-777413 Public D3.3

31/07/2019 Page | 10

their min and max values-ranges. Maximum depth
level and mode of the search can also be indicated.

(12) data/<id>/derivedData
(13) data/<id>/wasDerivedFrom

Starting from a specific data entity of the data
dependency is possible to navigate through the
derived data (11) or backwards across the
element’s data dependencies (12). The number of
traversal steps is provided as a parameter (level).

(14) terms?<query string>

Return a list of discoverable metadata terms
based on their appearance for a list of runIds,
usernames, or for the whole provenance archive.
Terms are returned indicating their type (when
consistently used), min and max values and their
number occurrences within the scope of the
search.

Table 3: S-ProvFlow API Methods Comprehensive Summaries

Comprehensive Summaries

(15)
summaries/workflowexecutions/<id>?<query
string>

Produce a detailed overview of the distribution of
the computation, reporting the size of data
movements between the workflow components,
their instances or invocations across worker
nodes, depending on the specified granularity
level. Additional information, such as process pid,
worker, in- stance or component of the workflow
(depending on the level of granularity) can be
selectively extracted by assigning these properties
to a groupBy parameter. This will allow users to
perform visual analytics tasks that exploit different
level of detail and organisations of the visual data-
space.

(16) summaries/collaborative?<query string>

Extract information about the reuse and exchange
of data between workflow executions based on
terms’ values- ranges and a group of users. The
API method allows for inclusive or exclusive (mode
::= (OR | AND) queries on the terms’ values. As
above, additional details, such as running
infrastructure, type and name of the workflow can
be selectively extracted by assigning these
properties to a groupBy parameter. This will
support the generation of grouped views.

DARE-777413 Public D3.3

31/07/2019 Page | 11

3.1 Managing Data Properties to Assist Discovery
Users can search for workflow executions and data elements adopting terms which refer to standard
vocabularies, as well as experimental terms introduced by specific application’s and researchers’
requirements. Searching for workflows’ executions allows them to configure the visual tools for the
exploration of a specific workflow run. Here they can search for experiment and data or apply filters on
a collection of data entities previously retrieved (i.e. on the properties of their ancestors (10)). Each
data product is described by its metadata and the information about its generating process.
The selection of the terms for the searching or the filtering is assisted through hints. These are
suggested among the terms introduced by the user’s runs attributed to the S-PROV entities such as
ComponentParameters and DataGranule (Figure 1). The hints are presented to the user by accessing an
additional database collection, the terms summaries, that is regularly updated via the incremental
analysis of the whole provenance archive. The update is performed offline by a batch job that, by
executing two map-reduce processes on the lineage documents and the terms summaries itself, emits
and updates statistics for all the terms introduced by the users’ experiments.

Figure 2: The image shows the workflow that produces the summaries about the terms that are introduced by the users’
run in the provenance archive. The summaries describe the use of the term (metadata or parameters), their type (string or
numerical) and statistics (count, max and min values). Three summaries are produced: for single runs (a), users (b) and for
the full collection of workflows’ executions (c).

The workflow implemented by the batch job is described in Figure 2. This new collection is queried by
the terms method of the API (14), which returns for each term, the way it is used (metadata or
parameter), type, min and max values, when they have a numerical type, and their number of
occurrences within the scope of the search. They may be associated with namespaces prefixes referring

DARE-777413 Public D3.3

31/07/2019 Page | 12

to controlled vocabularies or new and experimental.

4 Conclusions and Future Work
The combination of consistent provenance streams with powerful tools supporting interactive access,
delivers a smooth path between different levels of expertise that requires to explore the workflow’s
outcome as needed. The methods are exposed by the web API on top of the underlying lineage model
S-PROV, that accommodates complex lineage patterns in data-intensive and stateful operations. The
model also represents details about the mapping of the abstract workflow to its distributed and
concurrent execution.

Through the API, users and interfaces have easy access to common provenance interrogation use cases.
We have shown how we postprocess the lineage to offer hints on metadata terms to be used for
discovery that might be relevant in the context of many users and experiments. The system deployment
model has been improved adopting docker and it is integrated in the DARE test-bed. This allowed the
API to be concretely adopted in the WP6 and WP7 trainings, to monitor workflow executions and
validate the obtained results according to the specific scientific aims and terminology.
We envisage future work to validate and align the API with the PROV-AQ recommendation for
provenance access and query services, thereby improving interoperability, and in the implementation
of the API methods and model, improving its integration and linkage to the DARE Knowledge Base and
Workflow Registry. Finally, we want to integrate provenance information capturing the interaction of
the user that access and customise their computational context and development environments within
specific working sessions. Though, different provenance use case suggest the adoption of different
technological choices for its performant and usable storage, thereby, the experimentation of polyglot
solutions should be motivated by further work in provenance exploitation scenarios.

