
DARE-777413 Public D4.1

31/07/2019 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

Big Data Analytics Toolkit I

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.1 Big Data Analytics Toolkit I

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.1
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 30/06/2019
Deadline extended to 31/07/2019 in agreement with PO

Submission Date 31/07/2019

Status Final Draft

Editor(s) Antonis Koukourikos (NCSR-D)

Contributor(s) Angelos Charalambidis (NCSR-D), Giannis Mouchakis (NCSR-D),
André Germund (FRAUNHOFER)

Reviewer(s) Wim Som de Cerff (KNMI)

Document description

The report accompanies the software deliverable for the Big
Data Analytics components integrated in the DARE platform.
It provides a short description on the different components,
their role within the DARE platform and their current status of
maturity. It also provides links to relevant code and
documentation.

DARE-777413 Public D4.1

31/07/2019 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

0.1 24/06/2019 ToC NCSR-D
0.5 15/07/2019 Section 2 NCSR-D, FRAUNHOFER
0.8 22/07/2019 Draft for Internal Review NCSR-D
0.9 26/07/2019 Internal Review KNMI

1.0 29/07/2019 Review comments addressed and
document finalised NCSR-D

DARE-777413 Public D4.1

31/07/2019 Page | 3

Executive Summary
The present report acts as an overview of the technical developments pertaining to the Big
Data Analytics toolkit incorporated in the DARE platform.
The document summarizes the functionality of the relevant components, provides information
on their deployment and availability and refers to the relevant code and documentation
available through the project’s GitLab repositories.

DARE-777413 Public D4.1

31/07/2019 Page | 4

Table of Contents

1 Introduction ... 5

1.1 Purpose and Scope .. 5

1.2 Approach and relationship with other Work Packages and Deliverables 5

1.3 Methodology and Structure of the Deliverable .. 5

2 DARE Big Data Analytics Components .. 6

2.1 DARE Big Data Integrator Platform .. 6

2.2 Deployment and availability .. 7
2.2.1 Deployment in Bare-Metal machines ... 7

Installation of the operating system ... 7
Installation of the basic platform .. 7
Installation of the Ceph storage system ... 8

2.2.2 Deployment in Kubernetes-ready environments ... 10

3 Summary and Next Steps ... 11

DARE-777413 Public D4.1

31/07/2019 Page | 5

1 Introduction
The document is an accompanying report to the deployment of the first version of the Big Data
Analytics toolkit that is incorporated in the DARE Software Stack.

1.1 Purpose and Scope
The purpose of the report is to summarize the progress on T4.1, i.e. the task responsible for
developing, customizing and making available the Big Data Analytics components that will be
used via the integrated DARE platform.
It provides links to relevant code repositories and documentation and offers guidelines for
installing and deploying the toolkit.

1.2 Approach and relationship with other Work Packages and Deliverables
D4.1, a direct deliverable for T4.1, Big Data Analytics Toolkit, encapsulates all activities of the
task, designed after communication with several other tasks and work packages.
Specifically, it follows the blueprint provided by WP2 and particularly D2.1, DARE Architecture
and Technical Positioning. Additionally, it takes into account the requirements and user stories
defined by WP3 and aims to serve the pilots of the two DARE user communities (WP6 and
WP7). Finally, the task worked closely with WP5, in order to coordinate the installation and
deployment processes.

1.3 Methodology and Structure of the Deliverable
The report accompanies a software deliverable comprising the Big Data Analytics components
thus far incorporated in the DARE platform, under the guidelines and design set by the DARE
architectural principles (cf. deliverable D2.1 of the project).
Section 2.1 provides a high-level overview of the relevant components and their organization
under the Big Data Integrator platform. Section 2.2 summarizes the adopted approach for their
deployment, along with the relevant instructions and guidelines.
Finally, Section 3 reports on future steps towards the next platform release and the second
version of the Big Data Analytics toolkit itself.

DARE-777413 Public D4.1

31/07/2019 Page | 6

2 DARE Big Data Analytics Components
The components comprising the DARE Big Data Analytics Toolkit are organized as an
instantiation of the Big Data Integrator (BDI) platform, which incorporates the tools required for
serving the DARE use cases. These include both general-purpose Big Data Processing tools and
domain-specific tools addressing the needs of the participating communities. The tools
integrated at this point are described in the following subsection.

2.1 DARE Big Data Integrator Platform
The Big Data Integrator (BDI) platform comprises a set of tools and systems that enabled the
easy creation of scalable Big Data infrastructures. BDI uses at its core Docker1 technologies to
ensure the ease of packaging and deployment. Moreover, it provides a wide variety of systems
packaged as Docker images and verified in various use-case scenarios.

DARE BDI platform builds on these proven technologies to provide the core infrastructure of
every DARE deployment. In contrast to the BDI platform, DARE platform is based on
Kubernetes2 rather than the simpler Docker Swarm3. Kubernetes provides a more sophisticated
deployment strategies and currently is the de-facto resource management framework for
deployment containerized scalable applications in the cloud.

The DARE BDI platform is comprised of the general-purpose components and the DARE
components.
The general-purpose components provide generic functionality to the platform such as storage,
monitoring and authentication while the DARE components realize the DARE architecture. All
the components are containerized and share common resources of the cluster.

Currently, the main DARE components that are available and deployable in the DARE platform
are the following:

● dispel4py that acts as the current implementor of the WaaS (Workflow as a Service) and
it used to enact user-defined workflows.

● S-PROV that is responsible for collecting, preserving and reporting on provenance
information from the workflow execution over the platform.

● SemaGrow that is the realization of the federating layer of the various metadata of the
platform.

● d4p-registry that acts as the registry of the available processing elements of dispel4py
● data-catalogue that stores metadata of the datasets available

Apart from the main DARE components there are also deployed supporting systems that
facilitate the execution of the main components. These systems are the following:

● mysql acting as persistent storage of the d4p-registry
● mongodb acting as persistent storage of sprov
● virtuoso acting as persistent storage of the data-catalogue
● sprov-viewer used as the frontend user interface for visualized provenance from sprov.

The infrastructural components of the DARE platform are the following:

● ceph providing the main distributed storage facility for the cluster

1 https://www.docker.com/
2 https://kubernetes.io/
3 https://docs.docker.com/engine/swarm/

DARE-777413 Public D4.1

31/07/2019 Page | 7

● nginx acting as the main entry to the platform, namely it redirects requests to the
external DARE API to internal services.

● keycloak acting as the authentication broker
● prometheus and grafana for collecting and visualizing metrics of the cluster’s

performance.
● mpi-operator that is used to enable the execution of MPI jobs in the Kubernetes cluster.
● cert-manager to manage the issue of SSL certifications.

The DARE BDI platform is publicly available in https://www.gitlab.com/project-dare/dare-bdi

2.2 Deployment and availability

2.2.1 Deployment in Bare-Metal machines

Installation of the operating system
The platform is currently tested with the operating system Ubuntu Server 18.04.4 The version
18.04 is long term support (LTS) and is supported and receive updates until 2028.
We assume that the deployment takes place in a cluster of machines and each machine has two
block devices. The first one (/dev/vda) will be used for the installation of the operating system
while the second one (/dev/vdb) will be used by Ceph and will remain unformatted. Every
machine in the cluster is identical. Moreover, at least one of the machines should have two
network interfaces (say, eth0 and eth1). The first one will be used for the communication with
the other cluster nodes while the second one will be used for installing the bare-metal load
balancer.
The workflow for installing the basic operating system is the typical one. The operator has to
provide the username and password for the initial user when asked by the Ubuntu installer.
Moreover, it has to provide the network details such as hostname, domain name, IP, netmask,
gateway and DNS. These details can be provided by the network operator of the data center.
After the successful installation of the operating system the passwordless ssh root access must
be activated.
The aforementioned step can be skipped if the machines are virtual and the operating system is
created from a template image.

Installation of the basic platform
The basic platform includes Docker and Kubernetes. For the installation we use Kubespray 2.9,
a set of Ansible5 playbooks, inventory6, provisioning tools and domain knowledge for generic
OS/Kubernetes cluster configuration management tasks. This procedure ensures that the OS
configuration is automated, and the installation is always the same. Prior of executing
Kubespray we need to satisfy its dependencies.7
First, we need to download the playbooks of Kubespray

git clone -b release-2.9 https://github.com/kubernetes-sigs/kubespray.git
cd kubespray
cp -rfp inventory/sample inventory/mycluster

Second we apply the following changes:

4 http://releases.ubuntu.com/18.04
5 http://docs.ansible.com
6 https://github.com/kubernetes-incubator/kubespray/blob/master/docs/ansible.md
7 https://github.com/kubernetes-sigs/kubespray/tree/release-2.9#requirements

DARE-777413 Public D4.1

31/07/2019 Page | 8

(a) In the file inventory/mycluster/group_vars/all/all.yaml we set

kubelet_load_modules: true

and

upstream_dns_servers:
 - 8.8.8.8
 - 8.8.4.4

(b) In the file inventory/mycluster/group_vars/k8s-cluster/addons.yml we set

helm_enabled: true

The aforementioned settings instruct the Kubespray to also install Helm, a Kubernetes package
manager.

(c) In the file inventory/mycluster/inventory.ini we set the IPs of every machine in the
cluster.

The following commands in the terminal should initialize the installation.

sudo pip install -r requirements.txt
ansible-playbook -i inventory/mycluster/inventory.ini --become --become-
user=root -u root cluster.yml

After the successful return of the commands one can verify the installation by executing in a
master node the following

kubectl get pods --all-namespaces

The expected answer is that all the pods have status “Running”.

Installation of the Ceph storage system
We also want to install a storage facility that will provide to the Kubernetes cluster persistent,
distributed and highly-available block devices. The following instruction will lead to a working
Ceph8 system running in Kubernetes itself and thus in the same nodes of the cluster. Recall that
the machines assume a second block device (/dev/vdb) that Ceph will manage. For the
installation of Ceph in the Kubernetes environment we use Rook9.

First we download the sources of Rook in a Kubernets master.

git clone -b release-0.9 https://github.com/rook/rook.git

8 https://ceph.com/
9 https://rook.io/

DARE-777413 Public D4.1

31/07/2019 Page | 9

Then we specify some details in the configuration. In the file
cluster/examples/kubernetes/ceph/operator.yaml we set:

- name: FLEXVOLUME_DIR_PATH
 value: "/var/lib/kubelet/volume-plugins"

Lastly we deploy the Rook operator using the following command.

kubectl apply -f cluster/examples/kubernetes/ceph/operator.yaml

The expected behavior is to successfully create the rook-ceph-operator, rook-ceph-agent and
rook-discover pods. Their status should be “Running” and can be checked using

kubectl -n rook-ceph-system get pod

To deploy the Ceph cluster first in the file
cluster/examples/kubernetes/ceph/cluster.yaml we set:

storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: "vdb"

We apply our changes using

kubectl apply -f cluster/examples/kubernetes/ceph/cluster.yaml

Upon successful application the ceph cluster will be deployed and the following command

kubectl -n rook-ceph get pod

will answer that the rook-ceph-mgr, rook-ceph-mon and rook-ceph-osd pods have all status
“Running”.

Finally, we need to activate the ceph block storage as a storageclass in Kubernetes. This can be
achieved using the following command.

kubectl apply -f cluster/examples/kubernetes/ceph/storageclass.yaml

We can set the newly created storageclass as default (which is recommended) using the
following

kubectl patch storageclass rook-ceph-block -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

DARE-777413 Public D4.1

31/07/2019 Page | 10

2.2.2 Deployment in Kubernetes-ready environments
The following instructions assume the existence of a functional Kubernetes cluster and a default
storage class that can be used for acquiring persistent volumes. Most of the managed
kubernetes services will provide these dependencies out of the box. On any other case one
should consider the previous sections for installing Docker, Kubernetes and Ceph in bare-metal
machines.

The platform uses Helm to ease the installation and configuration of the individual
components.

First, we should download the sources of the DARE BDI platform using

git clone https://gitlab.com/project-dare/dare-bdi.git

Then, we need to package the platform using

helm dep up
mkdir -p /build
helm package . -d /build

and install the platform to the Kubernetes cluster using

helm install -n dare -f values.yaml /build/dare-bdi-*.tar.gz

In order to retrieve the status of the deployment one should use

helm status dare

The file values.yaml contain various configuration options. If not sure one can use the
default values provided by the platform (i.e. do not provide any overrides of configuration in
the helm install command).

A testbed platform is online and accessible in https://testbed.project-dare.eu

DARE-777413 Public D4.1

31/07/2019 Page | 11

3 Summary and Next Steps
The DARE BDI platform is a deployment cloud-native platform designed with the objective to be
easily deployable in a variety of infrastructures. As next steps we plan to package the remaining
DARE components as containers and incorporate them into the final deployable platform. We
also plan to make the installation and configuration as automated as possible. Moreover, we
will maintain the infrastructural components and upgrade them to their latest stable versions.
Finally, we will setup cluster authentication and authorization for the platform users.

