
DARE-777413 Public D4.3

31/07/2019 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.3 Data-driven Abstraction Specification and Execution
Mapping Services Toolkit I

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.2, T4.4
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 30/06/2019
Deadline extended to 31/07/2019 in agreement with PO

Submission Date 31/07/2019

Status Final Draft

Editor(s) Amy Krause (UEDIN)

Contributor(s) Alessandro Spinuso (KNMI), Thanasis Davettas, Antonis
Koukourikos (NCSR-D)

Reviewer(s) Andreas Oikonomopoulos (NCSR-D)

Document description

The report accompanies the software deliverable for the
Abstraction Specification & Execution Mapping components
integrated in the DARE platform.
It provides a short description on the different components, their
role within the DARE platform and their current status of maturity.
It also provides links to relevant code and documentation.

Data-driven Abstraction Specification and
Execution Mapping Services Toolkit I

DARE-777413 Public D4.3

31/07/2019 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

0.1 24/06/2019 ToC NCSR-D
0.2 09/07/2019 First draft UEDIN
0.5 22/07/2019 Execution API info NCSR-D
0.8 25/07/2019 Final draft UEDIN
0.9 26/07/2019 Internal Review NCSR-D

1.0 29/07/2019 Review comments addressed and
document finalised NCSR-D

DARE-777413 Public D4.3

31/07/2019 Page | 3

Executive Summary
This task is responsible for designing, implementing and iteratively enriching the execution mapping
services foreseen in DARE. The set of services will integrate the interfacing with different execution
platforms and frameworks, continuously supporting further processing assets, in accordance with
the priorities and needs posed by the user communities.	
This deliverable outlines the data-driven abstraction specification DARE software components
produced by the extension and improvement of dispel4py. These components allow for the context-
agnostic, abstract specifications of methods addressing data, computing and complexity extremes.
New features were added to dispel4py to extends the support for distributed mappings and more
functionality as processing element implementations.
The abstractions defined by dispel4py are exposed through the DARE API. The DARE API is the entry
point of DARE that among other allows the access to the computational resources
of the platform.

DARE-777413 Public D4.3

31/07/2019 Page | 4

Table of Contents

1 Introduction ... 5

1.1 Purpose and Scope ... 5

1.2 Approach and relationship with other Work Packages and Deliverables 5

1.3 Methodology and Structure of the Deliverable ... 5

2 DARE Abstraction Specification and Execution Mapping Services ... 6

2.1 Abstraction Specification Components ... 6
2.1.1 CWL .. 6
2.1.2 dispel4py .. 6
2.1.3 PE Catalogue .. 6
2.1.4 Extension of the PE library ... 6

2.2 Execution Mapping Components .. 7
2.2.1 Kubernetes ... 7
2.2.2 SPECFEM3D .. 7
2.2.3 Docker .. 7
2.2.4 dispel4py mappings .. 7

2.2.4.1 Mappings .. 7
2.2.4.2 Provenance ... 8
2.2.4.3 Python 3 .. 8

3 Integration in DARE Platform ... 9

3.1 Execution API ... 9

3.2 Data services .. 9

4 Summary and Next Steps ... 10

DARE-777413 Public D4.3

31/07/2019 Page | 5

1 Introduction

1.1 Purpose and Scope
This task is responsible for designing, implementing and iteratively enriching the execution mapping
services foreseen in DARE. The set of services will integrate the interfacing with different execution
platforms and frameworks, continuously supporting further processing assets, in accordance with
the priorities and needs posed by the user communities.	
This deliverable outlines the data-driven abstraction specification DARE software components
produced by the extension and improvement of dispel4py. These components allow for the context-
agnostic, abstract specifications of methods addressing data, computing and complexity extremes.

1.2 Approach and relationship with other Work Packages and Deliverables
The architecture designed by work package 2 provides the blueprint for the DARE software
components and their interactions described in this deliverable.
The execution mapping services is informed by and provides input for the data lineage services in
WP3. The DARE API created in WP3 provides an abstract layer for communication with the execution
platform via the mapping services.
Work package 5 provides the testbed infrastructure with the Kubernetes cluster that hosts the API,
data services, user management, provenance services and the workflow catalogue which all interact
with the mapping services.
The design and implementation of the execution mapping services is driven by the priorities and
needs posed by the EPOS and IS-ENES use cases in work packages 6 and 7. In collaboration with
WP8, the execution mapping services were demonstrated in training events for each of the use case
communities of WP6 and WP7.

1.3 Methodology and Structure of the Deliverable
We describe the improvements to the abstract specification services in section 2. The integration in
the DARE platform is described in section 3. A summary and an outline of further steps for upcoming
releases can be found in section 4.

DARE-777413 Public D4.3

31/07/2019 Page | 6

2 DARE Abstraction Specification and Execution Mapping Services

2.1 Abstraction Specification Components
The data-driven abstraction specification DARE software components are produced by the
extension and improvement of dispel4py. These components will allow for the context-agnostic,
abstract specifications of methods addressing data, computing and complexity extremes.

2.1.1 CWL
The Common Workflow Language (CWL)1 orchestrates the top-level workflows and provides an
abstraction for task-based workflows across multiple platforms. CWL is widely used in e-science
communities as the abstraction of workflow descriptions enables portability and reproducibility.
CWL comes with rich support for the collection of provenance.
In existing implementations of the DARE use case scenarios, the workflow steps were combined in
a bash script with poor portability between platforms. To address this issue, CWL is used for abstract
specifications. These tools will make it easier for DARE to interoperate and integrate with other
communities in addition to the DARE user communities.

2.1.2 dispel4py
DARE dispel4py2 is responsible for the abstraction within each task of a CWL workflow to provide a
mapping to a parallel platform, such as a mapping to MPI for distributed memory clusters, and a
mapping taking advantage of Python multiprocessing for shared memory systems. Dispel4py scales
to large environments by using data parallelism.	
In collaboration with the top-level orchestration by CWL, dispel4py works at a more fine-grained
level. Its main concept is data streaming and tasks are described as data processing elements that
are coordinated by the data flowing between them. 	

2.1.3 PE Catalogue
The data-driven abstraction specification DARE software components are stored in the dispel4py
catalogue, or registry. The registry stores complete workflows as well as individual PEs and their
descriptions. These can be imported by third parties as and when required. The registry is collecting
a rich library of PEs produced by the implementations and extensions of the use cases. The
implementation3 was originally developed as part of the VERCE project.

2.1.4 Extension of the PE library
General PEs: These PEs are not domain specific and will be applied in many scenarios:

• Match or Join: this PE pairs up input data from two input streams, matching data items
according to a join condition

For the EPOS rapid assessment (RA) use case the PE library was extended with several new
processing element implementations:

• ReadStream: Create a stream of real and synthetic input data from miniseed formatted
files with matching time windows

• Norm: a preprocessing step that calculates the norm of the input streams
• Calculate peak ground motion
• Visualisation: plot maps to visualise the peak ground motion parameters
• Produce GeoJSON to enable integration with other geo-referencing tools

1 https://www.commonwl.org
2 https://gitlab.com/project-dare/dispel4py/tree/master
3 https://gitlab.com/project-dare/d4py-registry

DARE-777413 Public D4.3

31/07/2019 Page | 7

RA makes use of the Match PE: after the preprocessing pipeline of the synthetic and the real input
datasets, this PE pairs up real and synthetic traces from the same station and with the same time
window.

For the IS-ENES climate use case the following PE was created:
• icclim function: this PE applies the icclim4 function icclim.indice() which is parameterised

at the creation of the workflow.

2.2 Execution Mapping Components
The execution mapping interprets the abstract dataflow created by a user to create a concrete
enactment environment and to orchestrate the data processing.

2.2.1 Kubernetes
Kubernetes provides and manages the enactment platform, provided by WP5. It also orchestrates
the MPI execution and, in the future, the Apache Spark execution.

2.2.2 SPECFEM3D
The software package SPECFEM3D Cartesian simulates seismic wave propagation at the local or
regional scale and performs full waveform imaging (FWI) or adjoint tomography based upon the
spectral-element method (SEM). It is a parallel application for HPC environments with distributed
memory and MPI. To make this application available in the DARE cloud environment, a docker image
and a docker-compose configuration was created to create a cluster with MPI and SPECFEM3D. This
docker configuration provides the complete environment for deploying SPECFEM3D to the DARE
testbed. Coupled with the DARE API this component performs simulations in a Kubernetes
distributed compute cluster on demand. The synthetic data created in these simulations form the
input for the seismology rapid assessment use case.

2.2.3 Docker
A docker file is provided for each of the use cases (WP6&7) to provide a familiar environment for
domain users and combine this with the dispel4py client toolkit. In the case of WP6 (seismology)
this image contains the latest obspy release, for WP7 (climatology) the icclim toolkit is included.
dispel4py MPI Docker containers are deployed to Kubernetes to create MPI clusters on demand.

2.2.4 dispel4py mappings
This section describes the new features that were added to the dispel4py execution engine to
support the use case requirements.

2.2.4.1 Mappings
A prototype mapping for dispel4py explores the feasibility of Kafka as the distributed queue engine
in combination with Docker containers that wrap PEs and their dependencies. The Kafka mapping
is suitable for distributed memory environments (e.g. HPC clusters) and represents an alternative
to the MPI mapping. Since Kafka has been designed to take into account the needs of data-
streaming applications (e.g. scalability, reliability), our aim is to create dispel4py workflows using
Kafka query engine and compare the performance with the MPI mapping using the Kubernetes
infrastructure.
CWL is being used an intermediary language between the client specification of a dataflow and the
service executing the dataflow. A first prototype shows how a dispel4py workflow can be translated
to CWL, opening the door to interoperability with other workflow engines that support CWL. Adding
a CWL interface to dispel4py supports clients that use CWL to describe their workflows. Combining
this with dispel4py streaming features creates a rich environment for data intensive use cases.

4 https://icclim.readthedocs.io/en/latest/

DARE-777413 Public D4.3

31/07/2019 Page | 8

2.2.4.2 Provenance
dispel4py with provenance automatically generates the provenance wrappers for a dispel4py
workflow, specified by the user as a command line parameter when executing dispel4py on the
target platform.	

2.2.4.3 Python 3
A new version of dispel4py was released to provides support for Python 3, which is the version that
is used throughout the DARE project.

DARE-777413 Public D4.3

31/07/2019 Page | 9

3 Integration in DARE Platform

3.1 Execution API
The DARE Execution API enables the distributed and scalable execution of DARE components via a
HTTP interface that provides access to DARE execution services in a language-independent fashion,
thereby separating the client environment from the DARE execution platform. The relevant source
code and documentation can be accessed via the project’s GitLab repository5.
The current release of the DARE API supports the execution and monitoring of distributed
SPECFEM3D simulations and dispel4py workflows on a Kubernetes cluster that is created and
removed on-demand. The API implementation is designed to extend to other execution contexts in
later releases.
Through the role-based access, the control execution API accesses the Kubernetes API to spawn
container clusters on demand, while at the same time enabling shared file system access with itself
and the execution contexts and monitoring the status of executed jobs. All execution contexts are
built to use Common Workflow Language (CWL) which allows for dynamically parameterized
executions.
In addition, the execution API offers services such as uploading/downloading and referencing of
data and process monitoring.
A brief overview of the API’s functionality can be found at the relevant wiki page of the project6.

3.2 Data services
The data referencing as well as the uploading and downloading data for stage-in or stage-out in the
context of a workflow execution are available within the services of the DARE platform as a shared
filesystem. In addition, the workflows can use the EUDAT B2DROP service for sharing data.
In this phase, we show how this service is being exploited for the climate use case. It is planned to
be used in the next phase also for the EPOS use case.

5 https://gitlab.com/project-dare/dare-api
6 https://gitlab.com/project-dare/dare-api/wikis/Execution-API-brief-documentation

DARE-777413 Public D4.3

31/07/2019 Page | 10

4 Summary and Next Steps
The new interfaces that we are building on DARE provide a fluent path from prototyping to
production. Applications are not locked to platforms but can be moved to suitable new platforms
without human intervention and with the encoded method’s semantics unchanged. In the future
we will start the integration of an EOSC-Friendly AAI for the DARE platform, create improvements
of the semantic catalogues and the DARE Knowledge Base (DKB), along with the DARE workflow
optimiser.
In this iteration, important new features were added to the dispel4py library and the execution
mappings to support the DARE use cases and enable necessary abstractions for the next stage, in
which we will enrich the execution mapping services to optimise workflow executions. The
optimiser will use the provenance services to assess past performance; annotated PE descriptions
in the catalogue will inform deployment and distribution of workflows and components; extensions
to the DARE API will be integrated by the mapper.

