
DARE-777413 Public D2.2

 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

D2.2 DARE Architecture and Technical
Positioning II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D2.2 DARE Architecture and Technical Positioning II

Work package WP2: Architecture Specification and Innovation

Tasks involved T2.1: Architecture Specification, Tools and Components

Type R: Document, report

Dissemination Level P = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Malcolm Atkinson (UEDIN)
Iraklis Klampanos (NCSRD)

Contributors Valentina Andries (UEDIN)
Malcolm Atkinson (UEDIN)
Aurora Constantin (UEDIN)
Rosa Filgueira (UEDIN)

DARE-777413 Public D2.2

 Page | 2

André Gemünd (FRAUNHOFER)
Ellen Gottschämmer (KIT)
Vangelis Karkaletsis (NCSRD)
Iraklis Klampanos (NCSRD)
Antonis Koukourikos (NCSRD)
Amélie Levray (UEDIN)
Mike Lindner (KIT)
Federica Magnoni (INGV)
Christian Pagé (CERFACS)
Andreas Rietbrock (KIT)
Alessandro Spinuso (KNMI)
Chrysoula Themeli (NCSRD)
Xenofon Tsilimparis (GRNET)
Fabian Wolf (FRAUNHOFER)

Reviewers Xenofon Tsilimparis (GRNET) (§1, §2 & §3)
André Gemünd (FRAUNHOFER) (§4)
Alessandro Spinuso (KNMI) (§5)
Vangelis Karkaletsis (NCSRD) (§5 & §6)

Document description Development of the DARE architecture since D2.1 and innovation
planning to address the requirements of DARE user communities
and to enhance sustainability. Assessment of progress.

DARE-777413 Public D2.2

 Page | 3

Document Revision History

Version Date Change made Contributor

1 19/10/2020 Initial draft started Malcolm Atkinson (UEDIN)

2 29/10/2020 Updated section 4.3 Alessandro Spinuso (KNMI)

3 5/11/2020 Revised for meeting with
authors

Malcolm Atkinson (UEDIN)

4 5-18/11/2020 Added sections & revised to end
section 2

Malcolm Atkinson (UEDIN)

5 24-25/11/2020 Section 3.1.1 revised Federica Magnoni (INGV)

6 24/11/2020 Section 3.2 revised Christian Pagé (CERFACS)

7 25/11/2020 Section 5.3 drafted Valentina Andries (UEDIN)
Aurora Constantin (UEDIN)

8 26/11/2020 Added Section 3.1.2 Mike Lindner (KIT)

9 30/11/2020 Checked and added to Section
3.1.2 and checked 5.3.1

Ellen Gottschämmer (KIT)

10 30/11/2020 Revised Section 5.1 Xenofon Tsilimparis (GRNET)

11 1/12/2020 Reviewed sections 1 to 3 Xenofon Tsilimparis (GRNET)

12 3/12/2020 Revised section 4.2 Malcolm Atkinson (UEDIN)

13 4/12/2020 Revised section 4.4 Malcolm Atkinson (UEDIN)

DARE-777413 Public D2.2

 Page | 4

 Revised section 3.1 Federica Magnoni (INGV)

14 7/12/2020 Rewrote section 5.3.2 Valentina Andries (UEDIN)

15 8/12/2020 Wrote section 5.4 Malcolm Atkinson (UEDIN)

16 10/12/2020 Added DKB implementation and
demonstration in section 4.2

Amélie Levray (UEDIN)
Malcolm Atkinson(UEDIN)

17 11/12/2020 Revised 4.2.5 Malcolm Atkinson (UEDIN)

18 12/12/2020 Section 6 revision Malcolm Atkinson (UEDIN)

19 14/12/2020 Layout tidied & final check Malcolm Atkinson (UEDIN)

Executive Summary
DARE is an ambitious project that aims to provide novel approaches for creating and using data-
powered methods at the frontiers of today’s research and innovation. DARE’s central goal is to
support research developers – domain-expert software developers – to transparently make use
of European e-infrastructures, research infrastructures and other platforms and software in order
to create data- and computationally-intensive applications for their domains. DARE aims to
achieve these goals by providing much needed technology and methodology aligned with EOSC
developments.
This deliverable presents the progress since D2.1 with an interim report ID2.2 [Atkinson et al.
2020] and the new understanding of what is required from the DARE architecture, driven by the
interplay of user requirements and technological opportunities. These are constrained and
enhanced to yield future utility, extensibility and sustainability. New requirements for users to
directly create and control complex computational and data challenges are pushing DARE to
extend its integration, automation and optimisation. The initial progress with these is presented
and evaluated. They lead to a strategy for sustainability.

DARE-777413 Public D2.2

 Page | 5

Table of Contents

Executive Summary 4

1. Introduction 7

2. Architecture overview 9

3. User requirements and experience 15

3.1 Use by EPOS communities 16

3.1.1 Use by Seismologists 17

3.1.2 Use by Volcanologists 22

3.2 Use by climate-impact modellers 25

3.3 Use for development 31

3.4 Summary and conclusions 36

4. Architecture Implementation 38

4.1 Workflows as a Service (WaaS) 40

4.1.1 Concepts 40

4.1.2 User Instructions 41

4.1.3 Workflow Execution 41

4.1.4 Future Work - Optimisations 42

4.2 The DARE Knowledge Base (DKB) 43

4.2.1 DKB requirements 43

4.2.2 DKB roles 45

4.2.3 DKB contents, structure and functions 49

Instance specifications 50

Persistent Identifiers (PIDs) 50

Context specifications 51

Conceptual library specifications 54

4.2.4 DKB contemporaries 57

Data Catalogue 57

Registry 59

Relationship with P4 59

4.2.5 DKB Status and Potential 60

General-purpose DKB implementation 61

DKB demonstration 62

4.3 The P4, tools and interaction interfaces 62

DARE-777413 Public D2.2

 Page | 6

4.4 Conclusions & Summary 67

5 Future, Sustainability and Evaluation 69

5.1 User communities and sustainability 71

5.2 Individual and Combined services 71

5.2.1 Authentication and Authorisation 73

5.3 Assessment of utility and usability 74

5.3.1 Evaluation with students using the volcanic pilot 74

5.3.2 Evaluation interviewing research engineers 76

Aims 76

Participants 76

Procedure 76

Data Collection and Analysis 77

Results and Discussion 77

Summary and caveat 78

5.4 Summary and Conclusions 79

6 Summary, Vision and Impact 80

Acknowledgements 81

Bibliography 81

Appendix 1 Abbreviations and Definitions 86

DARE-777413 Public D2.2

 Page | 7

1. Introduction
The DARE architecture has to pursue two goals:

1. Shape the DARE platform and its future versions to meet emerging and anticipated
requirements and thereby improve user communities’ research work, and

2. Identify frameworks and strategies that will be extensively used to improve return on
investment and sustainability.

This requires a practical balance between delivering the required capabilities to the two DARE
user communities and a longer-term vision. The architecture described in D2.1 [Atkinson et al.
2018] shaped the first platform release [Klampanos et al. 2019]. The overall structure interlinking
three major subsystems, as shown in Figure 1.1 has proved successful and has been retained.

Figure 1.1: The three principal subsystems forming the DARE platform.

However, each technological pillar has been further developed, as outlined here and as
reported in more detail in Section (§) 4.

1. A lightweight integration of the DARE Knowledge Base (DKB) [Atkinson & Levray 2019]
makes it more easily used by the other subsystems and as a standalone service. It enables
incremental introduction into established research environments and provides a
foundation for increased abstraction, automation and stability co-existing with innovation.
It will provide an API and a Python library to enable developers and methods to use it
directly. It has two novel features: (a) research Contexts to manage scope within its
information space, and (b) a Conceptual library to accelerate productive use and help with
organising and interpreting the information. See §4.2 for more details.

2. The Workflows-as-a-Service (WaaS) has developed containerisation, orchestration and
dynamic deployment of dispel4py data-streaming workflows to meet demanding user
needs [LIang et al. 2020]. It includes CWL1 formalised workflows as part of that work, and
to extend the range of methods facilitated. See §4.1 for details.

3. The provision and exploitation of provenance via the Protected Pervasive Persistent
Provenance (P4) subsystem has extended its scope, configurability and visualisation, as
reported in [Spinuso et al. 2019]. It aims to deliver Reproducibility-as-a-Service (RaaS).
The adoption of provenance by scientists is being incentivised by more powerful
provenance-driven tools. See §4.3 for details.

1 W3C Common Workflow Language https://www.commonwl.org/

https://www.commonwl.org/

DARE-777413 Public D2.2

 Page | 8

The combined and released platform is supporting challenging data-intensive and
computationally demanding scientific methods and making them easy to deploy and use. For
example, the seismic rapid assessment calculation and comparison of ground motion - see §3.1.
This supports the next stages of seismological research and of climate-impact modelling. These
can be generalised to accommodate additional communities.

The current implementation is presented in §4.4. The WaaS handles dispel4py and CWL. It
employs optimisation when mapping dispel4py workflows onto production platforms, to improve
scalability. The DKB functionality provides an extensible and flexible information sharing facility
that should prove easy to use and thereby aid self sufficiency. The provenance handling provided
by P4 has extensive collection capacity connected by parameterised queries to provence-
powered tools. It delivers reproducibility-as-a-service, incentivising the use of provenance by
application communities. A foundation for reproducible science and minable records of scientific
procedures and progress. Offering convenient WaaS and good provenance-driven tools is an
essential step in achieving trustworthy evidence underpinning major decisions.

Sustainability is essential. Research communities will not learn how to use advanced technologies
if there is a risk that they will disappear. However, this requires the commitment of resources for
maintenance and support for the long term. All of the stakeholders need to share this responsibility
- see §5.1. Sustainability depends on establishing value and having that value recognised and on
recruiting sufficient support. Costs should be minimised by careful engineering and by
progressively empowering user communities to be self-sufficient by reducing the hurdles
encountered and by simplifying, vautomating and eliminating tasks.

The work of a research community uses resources they have access to, e.g., EOSC or institutional
or regional resources. Section 5.2 identifies the available services and how they are deployed
and protected.

DARE focuses on supporting research engineers/developers, who work with research
communities identifying and exploiting new opportunities from innovations in ICT and its
applications. An analysis of questionnaires and interviews assessed how far DARE was
successful - see §5.3.

Section 6 draws together all these issues and proposes a way forward that continues to extend
the DARE platform’s capabilities, while improving self-sufficiency and sustainability. The
sustainability strategy presented is DARE’s commitment to extending the range of applications
adopting DARE’s approach and architectures.

This is a final deliverable. Several publications are being prepared. Others joining in or adopting
DARE’s approach and aspects of its architecture will always be welcome. Consequently, we invite
allies, users, criticisms, observations or advice pertinent to DARE and its applications. Please
email: Malcolm.Atkinson@ed.ac.uk or iaklampanos@iit.demokritos.gr and we will respond, take
account of suggestions and acknowledge contributions.

mailto:Malcolm.Atkinson@ed.ac.uk
mailto:iaklampanos@iit.demokritos.gr

DARE-777413 Public D2.2

 Page | 9

2. Architecture overview
Role and context
The DARE architecture should shape a framework that facilitates ambitious research undertaken
by distributed, loosely federated multi-disciplinary communities typified by the solid-Earth and
climate communities DARE works with. This imposes several requirements and constraints.

1. The work of research developers and specialists should retain its value as digital
technology evolves. This requires their work should be expressed precisely and abstractly
so that it can be mapped (as far as possible automatically) to new digital infrastructures.
This should accelerate advances as new power becomes available while minimising
disruption and loss of methods and established practices. As reported in §3 and §4, DARE
has already made significant progress towards this goal. Meeting it also facilitates
deploying the DARE platform on a diversity of individual, institutional and regional
computing services.

2. Multiple expert viewpoints co-exist, as illustrated in Figure 2.1. Their collaboration should
be facilitated, e.g., between:

a. Application domain experts who set goals, pioneer new research methods and
organise teams, resources and campaigns.

b. Research developers who draw on RSE products (see below), compose, package,
steer and revise those elements to deliver tested contributions to their application
community’s goals.

c. Research Software/Systems Engineers (RSEs) who have specialist knowledge in
some aspects of computer science, distributed systems engineering, simulation
systems, data analytics, etc. They draw on theoretical and practical advances and
develop subsystems, libraries, simulation codes, etc. for use by multiple
application communities.

d. Resource providers who establish and sustain computation, storage, information
and other resources as services on which research communities depend.

3. The architecture has to be implementable, sustainable and affordable while meeting
today’s goals as rapidly as possible. At the same time, it has to deliver a good foundation
on which to build support for future research goals exploiting emerging and specialised
technologies. Keeping these immediate and longer-term considerations in balance is an
architectural duty with a concomitant obligation to communicate with and gain buy-in from
all of the stakeholders - the range of professionals listed above and a broad spectrum of
citizen scientists2.

2 During a career individuals transition between these roles and sometimes span more than one. We use
the term ‘Research Engineer’ to encompass 2b and 2c above in this document.

DARE-777413 Public D2.2

 Page | 10

Figure 2.1: Diverse roles are shown on the x axis. They may have inherently different viewpoints
which change as their activities move in the other two dimensions. Research success depends
on effective collaboration between these viewpoints while avoiding being slowed by attempting to
bring everything into a rigid consistent framework.

Architectural goals
The architecture therefore has to achieve the following goals to meet stakeholders’ priorities.

1. Delivering power and control to each user community. Ideally, they should be able to
immediately implement and use new methods exploiting all of the available computational
power and the full richness of available data to address their most demanding and
complex research challenges without undue disruption of their existing practices and
knowledge infrastructure [Edwards 2013].

2. Reducing the application communities’ dependence on IT specialists. A synergy between
computational experts and domain experts will always be necessary to push the frontiers
of research or to polish the optimisation of intensively used methods. However, most of
the needed innovation should be achievable by the application communities themselves.

a. Depending on others requires investment in explaining what is wanted and
introduces delays, leads to divergence from goals and loss of sustainability.

b. It means that an application community takes longer to spot new opportunities.
3. Achieving affordable long-term sustainability. Ultimately, all software on which the

application communities depend has to be maintained and supported3. As far as possible,
the DARE platform should be built using standard components that are widely used and
therefore their maintenance is amortised over an extensive community4. The remaining
software which tailors and integrates existing software and services has to be engineered
with maintenance in mind5. This is equivalent to considering the operational and
maintenance costs for a building. In the end, each application community has to meet its

3 Maintenance is approximately 90% of lifetime software costs. Open source doesn’t remove this cost, it
redistributes it.
4 E.g., global alliances for environmental science, geo-spatial, or data-intensive and computational R&D.
5 The Software Sustainability Institute, https://www.software.ac.uk/, develops and promotes the required
standards.

https://www.software.ac.uk/

DARE-777413 Public D2.2

 Page | 11

share of these costs, either by finding the resources, expert staff time or funds, or by
persuading its funders to top-slice budgets to meet these common requirements.

Significant progress towards the first goal has been made in DARE, see §3 and [Klampanos et
al. 2020, Atkinson et al. 2019, Klampanos et al. 2019, Pagé et al. 2019a, Spinuso et al. 2019 &
Magnoni et al. 2019a].

Architectural vision
Figure 2.2 shows the ideal state when these goals are reached. Agile application teams
incrementally build and test complex methods. When these are judged ready by application
experts, they are moved to production. There those methods are repeatedly used, on specified
targets, with steering of diagnostics, provenance collection, data handling and parameter revision
under the control of a broad community of practitioners. They comply with a community’s agreed
standards. When improvements are identified the application team can implement them and
deploy the improved version. Work is still required to generically support this goal and to fully
automate and optimise production. This includes tools to make this easier for research engineers
and to reduce the need to master technical detail. Both of which will help with system mobility and
address the users’ requirement to be able to instal and run DARE on their local, community or
national computational services.

DARE-777413 Public D2.2

 Page | 12

Figure 2.2: Fluent path from an application group’s development of a method to production (see
3.3 for details). The method (in this case for computational seismologists performing rapid
assessment of ground motion) is developed and repeatedly refined and tested by the application
experts. When they judge it ready it is moved to production automatically on the specified or
automatically chosen target computing, data and network services.

Application communities in the driving seat
The current intense interaction with specialist computer scientists, distributed systems engineers,
data scientists and data architects is highly beneficial and leading to rapid progress. However, it
depends on research-project funding6. That level of research funding designed to stimulate
innovation cannot be indefinitely sustained or spread to much wider communities undertaking
application-domain focused long-running campaigns and application-led R&D. For these reasons,
and for the reasons given above, it is essential to arrange that the majority of this work can
proceed effectively and efficiently without sustained specialist input. The need for specialist input
at places where significant innovation is needed will always reappear.

Achieving application-domain control and self-sufficiency depends on three interrelated
objectives:

6 A succession of eInfrastructure and big-data projects that have built the capabilities and skills we draw
on; they were invaluable and much appreciated.

DARE-777413 Public D2.2

 Page | 13

1. Improving automation so that there are fewer administrative tasks and less need for users
to provide information that could be supplied. This reduces the rate of failures during
development, learning and production.

2. Raising the level of abstraction so that their work is mainly achieved using stable and
implementation-independent concepts, terms and data - less to learn and fewer occasions
when it is necessary to re-learn.

3. Intellectual ramps that facilitate the acquisition of new skills incrementally, without having
to climb over substantial thresholds before users benefit from a new skill - delivering a
quick return on intellectual investment and exploration.

Recognising key roles
These improvements need to be delivered for each role in a community’s team; but, in DARE, we
focus on those for application specialists and research engineers. However, if we meet the
requirement to deploy instances of the DARE platform on institutional facilities, then the systems
administrators who install and support those instances will also need consideration. These
aspects of the DARE architecture increase in importance as the basic functionality is delivered.
Progress may be found in §3 and §4 respectively.

Achieving sustainability
Sustainability is critical for two reasons.

1. Without it we are behaving unethically, by leading application communities to depend on
a research environment that may disappear, leaving them a difficult recovery path finding
replacements and reformulating their methods and working practices.

2. Without it the return on investment is lost; the funds put in by our funders, ultimately
European taxpayers, and the effort put in by many researchers, developers and engineers
will yield very little.

Sustainability is hard to assess. It can only be measured in retrospect. It depends on the balance
between the cost of sustaining facilities (maintenance and support) and the available resources.
The latter depends on two factors:

1. The importance the application communities and their funders attach to it, which depends
on the quality and power of the system, and

2. The breadth and scale of the user communities.

DARE seeks to minimise costs by building on widely used software components. For example,
the Python and notebook technologies used are very widely adopted and supported7. And by
adopting professional software and systems engineering practices; e.g., those recommended by
SSI (§4). Sustainability and the development of take up is covered in §5.

Implementing the Architecture
The DARE platform reflects these architectural goals. It is accessed via the DARE API (a
collection of RESTful services) and, during development (§3.3) via the DARE playground. This is

7 Notebooks are particularly useful in combining documentation with functionality. They still need to be
used carefully, i.e., avoiding distracting detail that reduces learning success, mobility and longevity.

DARE-777413 Public D2.2

 Page | 14

made easier using a Python library called the DareManager. This realisation is shown in Figure
2.3. See §4 for details, after the uses of the DARE platform are presented in §3.

Figure 2.3: The operational context and use of the DARE platform showing its major components
(see §4 and §5.2) and its interaction with its environment. It is deployed and orchestrated by
kubernetes. It is used via a RESTful API using a library of Python wrappers delivered as a
DareManager. It calls on an open-ended set of external services and data sources.

DARE-777413 Public D2.2

 Page | 15

3. User requirements and experience
Architectural components such as WaaS and aspects of P4 have been integrated within the
platform, further extended and used by the communities’ workflows. Aspects of the DARE API
exposing the WaaS to research developers have had their usability, stability, portability,
maintainability and performance improved. These included the management of input and output
files, authentication and the use of Jupyter Notebooks.

The communities represented by WP6 and WP7 have tuned their provenance traces by specifying
the levels of detail and the metadata to be recorded during the execution of their experiments.
The framework allows for configuration and detailed extraction of customised information. This is
delivering benefits in terms of results management, discovery of relevant past runs and
reproducibility.

DARE supports the execution of different workflow technologies (dispel4py and CWL). dispel4py
can be explicitly implemented and configured by the application experts and their research
engineers. CWL is used to organise and execute tasks. Provenance traces are gathered for both
of these by P4 and are then used by the tools it supports. CWL is used for the SPECFEM parts
of seismic-simulation workflows (§3.1.1), the Fall3Dpy simulation for vulcanology (§3.1.2) and to
organise the cyclone tracking system (§3.2). The two systems have different approaches to
provenance generation but these are harmonised via s-ProvFlow (§4.3).

Other aspects which are relevant to an effective use of the DARE conceptual design and
architecture is the management of user’s identities and how these are handled across all of the
DARE components and microservices while enabling each community to use its established
mechanisms (§5.1).

Both communities of seismologists and climate scientists, and recently the volcanology
community, benefit from the adoption of remote development environments based on executable
notebooks (Jupyter, Jupyter Lab)8 [Rule, Adam, et al. 2018] . Notebooks became familiar among
computational scientists because they facilitate the generation and sharing of documentation of
methods, source-code and results in a single de-facto standard format. The successful support
of such tools requires the DARE API to include a set of utilities that allow users to develop, execute
and evaluate the results of a workflow within the same notebook.

The adoption of advanced and interactive development environments, such as notebooks, in
contexts where reproducibility is a priority, opens challenges concerning the correct use of such
tools and the realisation of mechanisms that facilitate consistent provenance acquisition and
interpretation. This has to capture changes to computational environments, such as software
stacks, configurations and resources. The latter include new algorithms as well as data. Concepts
concerning system and application domain need to be combined to represent setup and
exploitation of the computational spaces in a way that guarantees the consistent interpretation of

8 https://jupyter.org/

https://jupyter.org/

DARE-777413 Public D2.2

 Page | 16

the various entities involved in the longer term. Although enactment technologies might change
over time, the provenance records should guarantee that researchers are able to locate and
understand failures during attempts to reproduce a certain result or re-apply a method. DARE in
cooperation with the ENVRIFair project9 is addressing these challenges (§4.3).

3.1 Use by EPOS communities
Collaborative work of domain specific scientists, data architects and developers produced
significant advances in the design and implementation of the EPOS seismological use case with
its test cases (Deliverable D6.1 [Rietbrock et al. 2018]). Additionally, based on the mid-term
review, we slightly broadened our scope to a new community in the EPOS framework,
volcanology, to exemplify the versatility of the approach of the DARE platform and API. This is
achieved by introducing a new test case which involves workflows and tools useful for the
volcanology community (Deliverables D6.2 [Magnoni et al. 2020a] and D6.4 [Magnoni et al.
2020b]).

A summarised framing of the EPOS test cases is outlined below. Then, §3.1.1 and §3.1.2 contain
a more detailed description of each case.
● Rapid Assessment (RA) of ground motion test case

Community involved:
EPOS Earth Science community
Scientific problem:
Rapid calculation of seismic ground motion parameters after an earthquake
User requirements:
Handling of HPC numerical codes; implementation of complex, user customised scientific
procedures; shareability and reusability of procedures and their substeps; investigation and
reproducibility of results and errors; access to external RI services; monitor of job execution
DARE approach/solution:
Docker and CWL workflow to manage the execution of a numerical simulation code; dispel4py
workflows to manage the other substeps of the test case; customised provenance and metadata
capturing; consistent shared file system; Jupyter Notebook executed in Jupyter Lab
Final experience:
Successful implementation and execution of the workflow in the DARE platform via Jupyter
Notebook; promising expectations from the first seismological training event
● Moment Tensor in 3D (MT3D) test case

Community involved:
EPOS Earth Science community
Scientific problem:
Study of earthquake point-like source parameters and uncertainties using 3D Earth structures
User requirements:

9 ENVRIfair EU project https://envri.eu/

https://envri.eu/

DARE-777413 Public D2.2

 Page | 17

Handling of HPC numerical codes; implementation of complex, user customised scientific
procedures; shareability and reusability of procedures and their substeps; investigation and
reproducibility of results and errors; access to external RI services; monitoring of job executions
DARE approach/solution:
Docker and CWL workflow to manage the execution of a numerical simulation code also for
multiple jobs with different inputs; dispel4py workflows to manage the other substeps of the test
case; customised provenance and metadata capturing; consistent shared file system; Jupyter
Notebook executed in Jupyter Lab
Final experience:
Successful implementation and execution of the workflow in the DARE platform via Jupyter
Notebook; positive outcomes from the second seismological training event
● Volcanology (VC) test case

Community involved:
EPOS Earth Science community
Scientific problem:
Analyse ash dispersal models after volcanic eruptions
User requirements:
Handling of HPC numerical codes; implementation of complex, user customised scientific
procedures; shareability and reusability of procedures and their substeps; investigation and
reproducibility of results and errors; access to external RI services; monitoring of job executions
DARE approach/solution:
Docker and CWL workflow to manage the execution of a numerical simulation code; dispel4py
workflows to manage the other substeps of the test case; customised provenance and metadata
capturing; consistent shared file system; Jupyter Notebook executed in Jupyter Lab
Final experience:
Successful implementation and execution of the workflow in the DARE platform via Jupyter
Notebook; positive outcomes from summer school training event

3.1.1 Use by Seismologists
Following the requirements detailed in Deliverable D2.1 §7.1 [Atkinson et al. 2018] and exploiting
the main components described there, we started focusing on the RA test case. The aim was to
structure a workflow that could help researchers ease and speed-up the calculation of seismic
ground motion parameters (such as the peak ground acceleration (pga), peak ground velocity
(pgv) or peak ground displacement (pgd)), especially after large earthquakes, generating
specified outputs useful both scientifically and for communication with public and emergency
authorities. We used the RA test case as a typical example of our working methods to steer the
DARE platform development and build an easy-to-use, customisable framework made of
reusable, abstract and flexible components that can serve multiple purposes and extend beyond
the immediate EPOS seismological community.
The RA workflow has been designed with modular high-level steps that are represented in Figure
3.1 and described in Deliverables D6.1 [Rietbrock et al. 2018], D6.3 [Magnoni et al. 2019b] and
D6.2 [Magnoni et al. 2020a] where examples of the output results are also shown.

DARE-777413 Public D2.2

 Page | 18

Figure 3.1: The Rapid Assessment (RA) workflow. Green dots are the steps in common and
reusable in the MT3D test case (Fig. 3.2).

The implementation and execution of RA has been made possible by the development of the
DARE API components delivered by the first and second releases of the DARE platform
(Milestones MS6 & MS21) and their updates for the third release (MS10). In particular,
fundamental components meeting this aim are (see §4):

● The Execution API to enable distributed and scalable execution of simulation codes and
dispel4py workflows;

● The dispel4py Registry (or Processing Elements Library) to provide a workspace structure
for registering workflow entities (as processing elements) supporting reusability and
sharing;

● The CWL Workflow registry that acts as the registry for workflows based on CWL;
● The Provenance components sProv and sProv-viewer to record metadata and

provenance and offer visualisation functionalities.

Exploitation of DARE API components to perform workflows is realised through Jupyter
Notebooks executed in a Jupyter Lab10, a development environment introduced in DARE during
the second phase of the project, as detailed in §3.3. Specifically, the notebook allows users to
access the API functionalities to:

● register dockers, and dispel4py and CWL workflows;
● launch numerical simulations, specifically with the code SPECFEM3D_Cartesian (Fig.

3.1), with a simple API call that executes on the DARE cluster a dockerized version of the
code containing all the required dependencies:
dm.exec_cwl(nodes=nodes,input_data={input_data})
where input_data is a dictionary specifying the input files (see §3.3 and D6.4 [Magnoni et
al. 2020b] for details); in particular, the steps needed for a SPECFEM3D simulation are
implemented as a CWL workflow launched by executing the SPECFEM3D docker;

● execute dispel4py workflows, as those describing the other steps of RA (Fig. 3.1), through
other specific API calls that allow users to specify needed inputs and requirements (see
§3.3 for more details):
dm.exec_d4p(nodes=nodes,no_processes=no_processes,iterations=iterations,target=d4p_model
,prev_run_id=prev_run_id,reqs=”requirements”,inputdata=input_data) ;

10 https://jupyter.dare.scai.fraunhofer.de

DARE-777413 Public D2.2

 Page | 19

● upload required input files (as user customised input models, see Fig. 3.1), monitor the
launched jobs, check output directories, check and download useful output files.

A refinement phase followed the initial implementation of the RA test case in order to remove
obsolete intermediate, fine-grain steps that produced input files for main steps or that post-
processed outputs from previous main steps. This results in an even more modular workflow
constituted by proper, self-contained dispel4py sub-workflows that perform specific tasks and can
be executed, parallelised at scale, by themselves (if the required input files are already available)
or in a pipeline. Thus, they can be easily reused for other workflows or can be customised or
updated in the future without the need of modifying the whole procedure.

The provenance record has been implemented and recently refined for the RA dispel4py and
SPECFEM3D CWL workflows and it is easily customisable by users.

The latest versions of the developed codes are available in a git repository:

● Jupyter Notebook for RA test case
https://gitlab.com/project-dare/dare-examples/-/blob/master/wp6/WP6_RA.ipynb

● dispel4py sub-workflows composing the test case
https://gitlab.com/project-dare/WP6_EPOS/-
/tree/RA_total_script/processing_elements/Download_Specfem3d_Misfit_RA

● SPECFEM3D docker and CWL workflow
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/exec-context-
specfem3d
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/specfem3d
https://gitlab.com/project-dare/WP6_EPOS/-
/tree/RA_total_script/specfem3d/specfem3d_test_input_cwl

The next EPOS test case taken into account during the second DARE phase focused on the
analysis of the parameters that characterise the earthquake source and uncertainties of these
parameters, a key study for many seismological applications. For the chosen pilot, the seismic
source was approximated as a point source and the studied parameters were the earthquake
location, magnitude and rupture mechanism represented by the moment tensor, hence up to 9
free parameters (see D2.1 [Atkinson et al. 2018] and [Aki & Richards 1980]). The final goal was
to improve an initial model of the earthquake source by calculating the perturbations to its
parameters that minimised the misfit between simulated and recorded waveforms, a typical
inverse problem, and estimating the uncertainties attributed to the new solution. Since this
application specifically considered a 3D model to represent the Earth structure and invert for
moment tensor solutions, we named it Moment Tensor in 3D (MT3D). The workflow structure is
represented in Fig. 3.2 and described in Deliverables D6.2 [Magnoni et al. 2020a] and D6.4
[Magnoni et al. 2020b] where examples of the output results are also shown.

https://gitlab.com/project-dare/dare-examples/-/blob/master/wp6/WP6_RA.ipynb
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/processing_elements/Download_Specfem3d_Misfit_RA
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/processing_elements/Download_Specfem3d_Misfit_RA
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/exec-context-specfem3d
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/exec-context-specfem3d
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/specfem3d
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/specfem3d/specfem3d_test_input_cwl
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/specfem3d/specfem3d_test_input_cwl

DARE-777413 Public D2.2

 Page | 20

Figure 3.2: The Moment Tensor in 3D (MT3D) workflow. It calculates improved seismic source
parameters by minimising the misfit between recorded and simulated waveforms. Red dots are
steps in common with RA test case (Fig. 3.1)

To implement and execute the MT3D workflow in the DARE platform we benefit from the common
steps with RA (see the red dots in Fig. 3.2) already implemented as described above and easily
reusable. A new important step is then the simulation of the synthetics for perturbed source
parameters called ‘derivative synthetics’. The basic simulation with SPECFEM3D is the same as
RA but now multiple simulations with different input files need to be managed. This has been
handled through the same Kubernetes pod that runs multiple simulations. Moreover, related
metadata and provenance information should be carefully handled in order to combine these
simulated derivative synthetics in the following steps of the procedure. This will also enable
reusability for future seismic events with a similar starting solution thereby progressively and
significantly reducing computation time and costs as the system will have stored more and more
well-described fundamental solutions over time. Finally, the last two steps, specific for MT3D,
have been performed by constructing a new dispel4py workflow and API call to execute well-
established Python codes (already cited in D2.1 [Atkinson et al. 2018], D6.2 [Magnoni et al. 2020a]
and D6.4 [Magnoni et al. 2020b]): pyflex11 for the selection of the time windows suitable for
waveform comparison and inversion, and pycmt3d12 for seismic source inversion in a three-
dimensional Earth structure. Future update/substitution of these codes could be necessary as the
science advances. It is essential that such upgrades should be straightforward. The simplicity
of future upgrades must be taken into account when making implementation decisions13.

11 pyflex, L. Krisher; http://krischer.github.io/pyflex
12 pycmt3d, https://github.com/wjlei1990/pycmt3d

13 This simplicity requirement, “it remains easy to install and use new versions of application-domain
software and services now and after the project ends”, applies in virtually every aspect of applications
development and platform use. It is a critical aspect of sustainability. WP6 is exposing it first.

http://krischer.github.io/pyflex
https://github.com/wjlei1990/pycmt3d

DARE-777413 Public D2.2

 Page | 21

Metadata and provenance are captured and stored for the MT3D dispel4py workflows (as well as
for SPECFEM3D) following the same approach as used in the RA test case.

The development and implementation of the MT3D test case has been facilitated by the recent
creation of a playground framework, as described in §3.3. It allows users to directly test and debug
their workflows by launching ‘debug API calls’ in the Notebook getting inline output and logs.
Further exploitation of the Jupyter Notebook framework could become fundamental if used as an
environment where processing elements can be directly developed, registered and executed.

Based on the experience with the RA test case, a similar Notebook has been created for MT3D
in order to execute its specific workflow steps through the Jupyter Lab. The flexibility aimed for
the DARE platform is well demonstrated by noting that the structure of the API calls to execute
the sub-workflows (both CWL and dispel4py) is the same as described above for RA. This eases
the implementation of the new steps for which the only specificities are suitable input and
requirements.

The latest versions of the developed codes for MT3D test case are in the DARE git repository
(SPECFEM3D docker and CWL workflow are the same as RA test case above):

● Jupyter Notebook for MT3D test case
https://gitlab.com/project-dare/dare-examples/-/blob/master/wp6/WP6_MT3D.ipynb

● dispel4py sub-workflows composing the test case
https://gitlab.com/project-dare/WP6_EPOS/-
/tree/RA_total_script/processing_elements/MT-3D/workflow

In general, from the point of view of both research developers and domain experts, we can
highlight some significant advantages of exploiting the DARE platform for the EPOS use case but
also for more general scientific applications:

● Exploiting the Cloud for execution to provide elasticity in acquiring and using resources
and make on-demand computing and storage resources available.

● Transparent set up and execution of runs without the need to deal with environment
specificity and details of code/scripts execution. Here a single call is used to do all the
required steps to prepare the environment and run a SPECFEM3D simulation.

● Exploiting Research Infrastructure (RI) services by including them in the whole workflow
procedure, so taking care of the required input, query parameters and gathered output.
Here a simple call allows users to query FDSN web services of European archives to
download recorded waveforms.

● Rapid and transparent data analyses and transfer between co-working environments.
● Automatic description and storage of complete lineage and multiple metadata that allow

us to track runs and data through the whole workflow, to easily search and reuse them
and to also combine numerous outputs from multiple workflows that are in widespread use
in many scientific applications.

● High-level description of workflow steps that are as abstract as possible to increase the
flexibility in reusing them to assemble different workflows.

https://gitlab.com/project-dare/dare-examples/-/blob/master/wp6/WP6_MT3D.ipynb
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/processing_elements/MT-3D/workflow
https://gitlab.com/project-dare/WP6_EPOS/-/tree/RA_total_script/processing_elements/MT-3D/workflow

DARE-777413 Public D2.2

 Page | 22

● Existence of managed knowledge-bases (e.g. the PE registry) that allows users to easily
exchange information about what they deployed and executed.

● Workflow structure and provenance information that can be customised.

The incremental advances in the platform components and structure will favour the development
of more complex test cases. In the seismology framework an example could be the Ensemble
Simulation analyses (cited in D6.1 [Rietbrock et al. 2018]) that statistically characterises ground
motion parameters and their uncertainties and that would combine multiple executions of both RA
and MT3D test cases. This exemplifies once again how the powerful capabilities of the DARE
platform of reusing and combining workflows as much abstract as possible and keeping track of
the runs and errors are key for science.

The DARE approach could then be interesting for other communities, beyond the EPOS
seismologists, who are looking for a powerful and easy-to-use framework to develop their
applications. For this reason, WP6 spent part of the second phase of the project engaging with
the volcanology community by developing a new test case focused on the implementation of a
volcanological application, as described in §3.1.2 and Deliverables D6.2 [Magnoni et al. 2020a]
and D6.4 [Magnoni et al. 2020b].

At the end of the first reporting period a training event was organised in order to present the
execution of the RA workflow running on the first release of the DARE platform (D6.3 [Magnoni
et al. 2019b] and D8.4 [Casarotti et al. 2019]). A second training event was carried out as webinar
(due to COVID-19 emergency) to present the execution of the new seismological test case MT3D
through the developed Jupyter Lab and the latest release of the platform (D6.4 [Magnoni et al.
2020b] and D8.5 [Magnoni et al. 2020c]). The main advantages of using the platform have been
successfully caught by the trainees, while useful suggestions have been gathered on platform
development and aspects of the pilot implementation that could be improved. For the last training
detailed documentation has been prepared to guide the trainees and future users on DARE
platform methods and use14.

3.1.2 Use by Volcanologists

In addition to the original test cases, we have developed and implemented the Volcanology (VC)
test case as described also in Deliverables D6.2 [Magnoni et al. 2020a] and D6.4 [Magnoni et al.
2020b], based on the suggestions from the mid-term review. The scientific purpose is to analyse
ash dispersal after volcanic eruptions including distributions of deposit thickness, ground load and
airborne mass.

14 Tutorial Jupyter Notebook, https://gitlab.com/project-dare/dare-examples/-
/blob/master/tutorial/WP6_MT3D_tutorial.ipynb

https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/WP6_MT3D_tutorial.ipynb
https://gitlab.com/project-dare/dare-examples/-/blob/master/tutorial/WP6_MT3D_tutorial.ipynb

DARE-777413 Public D2.2

 Page | 23

The high-level structure of the workflow that we implemented on the DARE platform is shown in
Fig. 3.3.

Figure 3.3: Steps of the workflow for the volcanology test case.

Using freely available meteorological data (daily or monthly means), digital elevation models
(DEM) and parameters describing the volcanic eruption, we run simulations with FALL3DPy, a
python port of the original Fortran code FALL3D by [Folch et al. 2009] to obtain ash dispersal
distributions. The corresponding meteorological data (NOAA or ECMWF/ERA5) as well as the
digital elevation models (ETOPO1) are downloaded from external archives. Based on user input
(including the location of the volcano, the surrounding area, eruption duration, erupted mass, etc.)
ash dispersal is forward modeled and saved in a single NetCDF file which includes all simulated
time steps. Finally, in the post-processing step the content of the NetCDF file together with the
user input is used to generate visualisations of the individual ash distributions. In Fig. 3.4 we show
exemplary time steps for a simulation at Stromboli volcano in the Mediterranean Sea.

Figure 3.4: Simulation results showing the deposit thickness in mm 2:30 h (left) and 5:30 h
(right) after the eruption started for a scenario at Stromboli volcano on 01. January 2017.

This workflow has been implemented using the DARE platform and is executable via a Jupyter
Notebook interface, as for the seismological test cases. In an initial step a user registers in the
DARE platform and receives a token for authorization. For the simulation step, the dockerized
version of FALL3DPy is executed through a specific API call that creates in Kubernetes an MPI
cluster to run the code. Finally, the other steps of the VC test case (downloading meteorological
data, post-processing including plotting of the results, see Fig. 3.4) are described using dispel4py
workflows, made by several dispel4py PEs, and each separate executable workflow is launched

DARE-777413 Public D2.2

 Page | 24

through another specific API call. These calls always have the same structure (see description in
§3.1.1).

In addition to validation tests, the VC test case has been used by students and other users during
the exercises during a training course (24th July 2020 at KIT) about volcanic hazards in the
Mediterranean area. All participants were inexperienced with the test case (they only had some
background in general volcanology and numerical modeling) and worked with a Jupyter Notebook
that was provided via JupyterHub (Fig. 3.5). This allowed the users to perform further simulations
from any place after the onsite training event had concluded. This was a necessity given for the
elaboration phase of the students to produce case reports of the examined volcanological studies.
The deadline of the report was set to early November 2020. The overall feedback of the users
during the event was positive, especially with regard to performing such modeling scenarios with
an easy-to-use platform infrastructure. Minor suggestions for improvement and general issues of
the workflow and execution have been recorded by the tutors of the course and forwarded to the
developers of the use case. Furthermore, the training was evaluated by means of a questionnaire
given out to students participating during a course on volcanic hazard assessment. The detailed
description and evaluation results of the training is summarized in [Constantin 2020], deliverables
D6.4 [Magnoni et al. 2020b] and D8.5 [Magnoni et al. 2020c], and §5.3 evaluation stage 2.

Figure 3.5: Interface of the JupyterHub in which the Jupyter Notebook of the training event is displayed.

The VC-DARE approach gives the opportunity to perform fast hazard and risk assessment for not
only the volcanological community but also for insurance modelling applications. Ashfall
simulation in combination with mapped exposure and vulnerability information may allow for
estimations of a monetary impact as secondary effect on surrounding infrastructures. The existing

DARE-777413 Public D2.2

 Page | 25

notebook can hence be further extended using the developer-friendly DARE API to include such
routines in the VC workflow.

3.2 Use by climate-impact modellers
Exciting developments have taken place towards the implementation of a generic workflow tool
to access and process climate data, aimed at the climate change impact modelling research
communities’ users. The tool supports climate platform developers to provide on-demand data
processing for users using heterogeneous computational platforms, through the deployment of
the DARE Platform. One of the major objectives is to provide transparent access to on-demand
data processing using easy to use front-end for end users, through interaction with tailored front-
ends, such as that provided by climate4impact.eu (Figure 3.6)

Figure 3.6: climate4impact.eu Portal, providing guidance and on-demand data processing.

The design of the first and second prototypes took into account user requirements that have been
gathered. Those are described in detail in Deliverable D7.1. To complement this approach, User
Stories (described in Deliverable D3.1) have been used to provide information on how to properly
plan component development and design application architecture. The second prototype of this

DARE-777413 Public D2.2

 Page | 26

generic climate data analysis workflow tool, which has been implemented in October 2019, is
shown in Figure 3.7.

A summary of the second Climate Use cases is outlined below. The reader is referred to
Deliverable 7.3 [Pagé 2019] for details on its evaluation during a training Webinar.

Climate Cyclone Use Case
Community involved:
ENES Climate Research Developers
Scientific problem:
Leverage complex analysis tools, such as this specific one: the Tropical and Extratropical Cyclone
Tracking.
User requirements:
Handling of complex numerical codes and their configuration; implementation of user customised
scientific procedures; shareability and reusability of procedures and their substeps; investigation
and reproducibility of results and errors; access to external RI services; monitoring of job
execution
DARE approach/solution:
Docker and CWL workflow to manage the execution of a numerical analysis code; parallel
execution of parts of the workflow; customised provenance and metadata capturing; consistent
shared file system; Jupyter Notebook executed in Jupyter Lab.
Final experience:
Successful implementation and execution of the workflow on the DARE platform using Jupyter
Notebooks.

DARE-777413 Public D2.2

 Page | 27

Figure 3.7: Generic climate data analysis workflow second prototype. Implemented in Oct. 2019.

This second prototype has been evaluated during the first training event that took place on June
21st, 2019 in Utrecht, Netherlands, under the aegis of IS-ENES. The developers who participated
in this evaluation had a very significant interest in this generic workflow approach, notably by
requesting access to the DARE Platform API as soon as possible to test it and to begin developing
user services using it. The results of this evaluation is detailed in Deliverable D7.3.

The approach here for this generic workflow is to provide software developers using a platform
such as C4I a faster way to develop and provide on-demand data processing for users. The goal
with those platforms is not to provide an operational climate service like C3S provided by
Copernicus. Instead, it is aimed at researchers in other scientific domains, as well as at those
doing climate-change impact modelling. Those users, with such a generic workflow approach, will
be able to provide their own processing functions (as Python functions added to the icclim15 open
source software), as well as using their own OpenDAP-accessible datasets or use non-standard
MIPs from CMIP5 and CMIP6 experiments.

This approach requires an extensive metadata data description, as well as extensive lineage
information. This is because when data processing is automated and delegated, metadata
standards are necessary to be able to correctly process datasets. Furthermore, it is important for

15 https://github.com/cerfacs-globc/icclim

https://github.com/cerfacs-globc/icclim

DARE-777413 Public D2.2

 Page | 28

users to know how to reproduce the calculations as well as to know exactly which methods and
software were used.

During the mid-term review of the DARE project, the idea of designing a new climate-related use
case more in line with the seismological use cases emerged. This should attract users as it would
offer significantly different tools from those offered by other platforms such as the Copernicus
C3S Service16. We considered the possibility of running climate-impact models (such as
hydrological models), but these proved to be too specific and too complex to achieve given the
effort available within WP7. We therefore decided to develop a new use case centered on a
method/tool that can track extra-tropical as well as tropical cyclones17 in climate simulations. This
use case is called the Cyclone-Tracking climate use case. Currently, no front-end or online
platform offers researchers the opportunity to run on-demand extra-tropical cyclone tracking on
climate simulations selected by users. The idea is to provide researchers and users of climate
data the possibility to have access to this advanced tool and to provide them with the possibility
to generate end-products on-the-fly, such as tracks’ density plots (Figure 3.9) or Probability
Density Function plots (Figure 3.10). The code to generate those specific plots was developed
within the DARE project.

The crucial benefit of DARE is that this can then be easily transferred to a sufficient range of target
eInfrastructures, that the resources for the users using this new facility can be sustained.

Given the framework of the DARE Platform the workflow has been developed and implemented
by composing the following steps (see overview in Figure 3.8):

1. Selection of input file(s) by the user
2. Start of the execution initiated by the user using the C4I front-end in a Jupyter Notebook
3. Preparation of input parameters using interface user input
4. Upload of the tracking algorithm configuration file using the DARE API
5. Initiation the execution of the algorithm using the DARE API
6. Pre-processing of the input file(s) (taking place on the DARE Platform)
7. Download of the input file(s) by the DARE Platform, accessing the ESGF Climate

Research Infrastructure
8. Execution of the tracking algorithm (binary executable) on the input file(s)
9. Post-processing of the output files
10. Generation of end-products (e.g. tracking density map)
11. Upload of end-products and raw output files to the B2DROP user’s account
12. Notification to the user and transfer of the output files into the C4I front-end user space18

Part of this workflow is embarrassingly parallel, because climate simulations are always
independent from one to another. Since ensembles data analysis over multiple climate
simulations are almost always needed, steps 6 to 9 can be run independently for several individual

16 Copernicus Climate Change Service https://climate.copernicus.eu/
17 https://github.com/cerfacs-globc/cyclone_tracking
18 This step has not been implemented yet, because C4I 2.0, developed within the H2020-IS-ENES3
project, is still in alpha phase at this time.

https://climate.copernicus.eu/
https://github.com/cerfacs-globc/cyclone_tracking

DARE-777413 Public D2.2

 Page | 29

climate simulations in parallel. This parallel execution in the case of the user selection of multiple
scenarios has been implemented in the latest version of the workflow.

The cyclone tracking workflow has been implemented using the Common Workflow Language19
(CWL). This has been possible because support for CWL has been added to the DARE platform,
including the automated provenance generation. CWL was more suitable than dispel4py for the
cyclone tracking workflow because it is a sequential workflow. The automated provenance is
generating a lot of information, and the main workflow sequence can be summarised using this
information as shown in Figure 3.11.

An important point is that all developed source codes are available in several git repositories,
including the tracking software itself along with its end users’ products generation:

● CWL Workflow Cyclone Tracking source code:
https://gitlab.com/project-dare/wp7_cyclone-tracking/-/tree/cwl

● DARE Cyclone Tracking Container (within the DARE Platform repository):
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/exec-context-cyclone/cwl

● DARE Cyclone Tracking Training Tutorial Jupyter Notebook (within the DARE Platform
Examples repository):
https://gitlab.com/project-dare/dare-examples/-/tree/master/wp7/tutorial

● Cyclone Tracking Software (Fortran code):
https://github.com/cerfacs-globc/cyclone_tracking

● Cyclone Tracking Software End User Products
https://github.com/cerfacs-globc/cyclone_tracking_products

19 Common Workflow Language (CWL): https://www.commonwl.org

https://gitlab.com/project-dare/wp7_cyclone-tracking/-/tree/cwl
https://gitlab.com/project-dare/dare-platform/-/tree/master/containers/exec-context-cyclone/cwl
https://gitlab.com/project-dare/dare-examples/-/tree/master/wp7/tutorial
https://github.com/cerfacs-globc/cyclone_tracking
https://github.com/cerfacs-globc/cyclone_tracking_products
https://www.commonwl.org/

DARE-777413 Public D2.2

 Page | 30

Figure 3.8: Cyclone-Tracking Climate Use Case Workflow and Infrastructures integration.

Figure 3.9: Extra-Tropical Cyclones track density example plot.

DARE-777413 Public D2.2

 Page | 31

Figure 3.10: Extra-Tropical Cyclones probability density functions example plot.

Figure 3.11: Extra-tropical Cyclones CWL workflow automated provenance generation.

3.3 Use for development
There is a continuity between users and developers, in the sense that some application specialists
use DARE workflows developed by others, but still choose them, parameterise them and want to

DARE-777413 Public D2.2

 Page | 32

make adjustments to them. Others focus on developing new research methods, materialising
them as software libraries, simulation and analysis tools and integrated workflows. There is no
boundary between them, rather a continuum. Indeed, individuals move in this continuum as their
research requires. Consequently, that continuum needs consistent support.

The new interfaces that we are building on DARE provide a fluent path from prototyping to
production. Applications are not locked to platforms but can be moved to suitable new platforms
without human intervention and with the encoded method’s semantics unchanged.

The complex development and debugging requirements encountered in the latest steps of co-
design and co-development with the seismologists have provoked refinement of this development
playground and will lead to requirements for self-sufficiency in conducting further refinements and
production use. The quality of this support has been tested by a member of the KIT team using it
for an unanticipated use case. He developed, exploiting DARE’s framework, a method for using
a computational model of mass transport via ash and other ejecta from a volcanic eruption
(§3.1.2). This production has been used by staff and MSc students in the summer of 2020 during
a field course on Stromboli with its recent volcanic activity.

The DARE platform acts as an intermediary between users’ applications and the underlying
computing resources, making use of technologies including:

● Container Orchestration -- Kubernetes
● Distributed Engineering -- MPI cluster
● Workflows’ technologies -- dispel4py, CWL, Registry, S-Prov

The DARE API (see Figure 3.12), allows users and developers to register dispel4py workflows
(applications) to the registry, such as the RA seismology test case from WP6. Once a workflow
has been registered, it can be submitted for an execution, and the DARE API will automatically
deploy all the necessary environments on demand. It also facilitates monitoring the execution
status of a workflow in the platform.

DARE-777413 Public D2.2

 Page | 33

Figure 3.12: The execution of a dispel4py workflow using the DARE API. This figure shows all the
underlying steps as well as the entities that are involved.

In order to facilitate the development and testing of dispel4py workflows, a docker container has
been made available to users, to allow them to develop workflows locally (on their laptops or local
hosts), which mimics the configuration of the DARE platform. The idea is that users and
developers can have a “DARE environment” locally, which has the same libraries, python
versions, and so on that the DARE platform has. In the case that a library is missing, or another
version for a particular library is required for implementing a use case, these could be installed
locally in the docker container, and later they need to be specified to the DARE API at the time of
submitting the workflow by using a requirement file, as shows the following API call:

dm.exec_d4p(impl_id=impl_id,pckg="mysplitmerge_pckg",workspace_id=workspace_id,pe_name="my
SplitMerge", reqs='https://gitlab.com/project-dare/dare-
api/raw/master/examples/jupyter/requirements.txt', token=F.auth(), creds=creds, n_nodes=6,
no_processes=6, iterations=1)

Furthermore, a playground endpoint has been recently provided to users with more facilities for
debugging their applications and workflows inside the DARE platform. The playground simulates
a terminal allowing users to provide a command and see immediately the output results, giving
more direct control to users. Below, we show the previous example submitted in a “debug” mode:

F.debug_d4p(impl_id=impl_id, pckg="mysplitmerge_pckg", workspace_id=workspace_id,
pe_name="mySplitMerge", token=F.auth(), creds=creds, no_processes=6, iterations=1,
reqs='https://gitlab.com/project-dare/dare-api/raw/master/examples/jupyter/requirements.txt')

The current methodology for users to develop new workflows is to use the local docker container,
and then later test them on the DARE platform using the “playground mode”. When they are
satisfied with their validation they submit them to the platform in the “normal” mode.

DARE-777413 Public D2.2

 Page | 34

It is worth noting that the DARE API allows users not only to register and submit dispel4py
workflows (with or without additional requirements), but also to monitor and download the results,
files and log files associated with a workflow execution.

An example of how the DARE API can be used by users and developers can be found at the
following notebook: https://gitlab.com/project-dare/dare-
api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.ipynb,
in which a “mySplitMerge” dispel4py workflow is registered, submitted, executed (with and
without additional requirements) debugged, and monitored using the DARE API.

In addition to dispel4py, the DARE platform has been extended with the support for CWL
workflows management and execution. Similar to the dispel4py, DARE can register CWL
workflows, and the execution environments (dockers) they need to run. These can be retrieved
by name and version. In Table 3.1 we describe the high-level functions enabling users and
administrators to control the registration and execution of this type of workflows/environments.
Details on the implementation of this new capability is illustrated in D3.6 (DARE API II).

Below we provide a list of high-level management and execution functions that can be used
programmatically by the users of the DARE platform. These enable access to the platform,
registration and retrieval of workflows and environments, and offer basic monitoring and data
management tasks. Readers are referred to https://project-dare.gitlab.io/dare-platform/api/ for
complete and up-to-date information about the DARE API and helper functions. Those wishing to
install or deploy DARE should consult https://project-dare.gitlab.io/dare-platform/installation/. All
DARE technical documentation can be reached at https://project-dare.gitlab.io/dare-platform.

Table 3.1: Functions currently provided via the DARE API.

DARE platform API function Description

login(username, password, hostname) Get dispel4py registry credentials
by logging in

create_folders(hostname, token) Create the working environment

get_auth_header(token) Return the authentication header

get_workspace(name, creds) Get a workspace URL by name

create_workspace(clone, name, desc,
creds)

Create a workspace using dispel4py
registry API

create_pe(desc, name, conn, pckg,
workspace, clone, peimpls, creds)

Create ProcessingElement /
dispel4py workflow using d4p
registry API

https://gitlab.com/project-dare/dare-api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.ipynb
https://gitlab.com/project-dare/dare-api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.ipynb
https://project-dare.gitlab.io/dare-platform/api/
https://project-dare.gitlab.io/dare-platform/installation/
https://project-dare.gitlab.io/dare-platform

DARE-777413 Public D2.2

 Page | 35

create_peimpl(desc, code, parent_sig,
pckg, name, workspace, clone, creds)

Create ProcessingElement/ Workflow
Implementation using d4p registry
API

auth(length=10) Generate user "access token" /
Simulate user login

submit_d4p(impl_id, pckg,
workspace_id, pe_name, n_nodes, token,
creds, reqs=None, **kw)

Spawn MPI cluster and run dispel4py
workflow

debug_d4p(impl_id, pckg,workspace_id,
pe_name, token, creds, reqs=None,
output_filename="output.txt", **kw)

Debug a dispel4py workflow in
“playground mode”

exec_command(hostname, token,
command,
output_filename="output.txt")

Allows for running a command in
“playground mode”.

register_docker(docker_name,
 docker_tag,
 docker_url,
 script_names,
 docker_folder)

Allow a user to define a container
(docker) environment and registers
it to the DARE platform

download_docker(docker_name,
 docker_tag,
 local_path)

provide_docker_image_url(docker_nam
e,
 docker_tag,
 docker_url)

Allow an administrator to download
the container files. He/She would
validate them, build the image and
update the docker entry so as to
provide a url to a public image
repository

update_docker(..)

Update the tag or name of a
container

add_script_to_existing_docker(..)
edit_script_in_existing_docker(..)
delete_script_in_docker(..)

Allow the management of the
executable scripts hosted in a
target container

register_cwl(cwl_params,
docker_params, register_docker)

Register CWL workflow and associate
it with the docker environment

DARE-777413 Public D2.2

 Page | 36

exec_cwl(workflow_name,
 workflow_version)

Execute a CWL workflow previously
registered within the associated
container.

upload(token, path, local_path,
creds)

Upload data into a working
environment

myfiles(token, creds) and
files_pretty_print(_json)

List the uploaded files......

download(path, creds, local_path) Downloads a file using exec-api
filesystem reference.

delete_workspace(name, creds) Deleted a workspace

submit_specfem(n_nodes, data_url,
token, creds)

Spawn an MPI cluster and run a
specfem workflow

my_pods(token, creds) Returns user created pod properties
(name and status)

send2drop(token, path, creds) Uploads a file from the exec-api
shared filesystem to the project-
dare b2drop account in order to get
a shareable link for a single file

pod_pretty_print(_json) Monitoring container status

monitor(creds): Monitor Monitor a dispel4py workflow run

3.4 Summary and conclusions
Throughout the DARE project interaction between developers of the platform and the two user
communities has been very intensive. It has led to increased understanding of requirements,
recognition of challenges that are relevant to many communities and to many e-Infrastructure
builders and providers. Progress with both user communities has been significant, providing
evidence of the potential value of the DARE platform and approach. The seismic methods are
developing in complexity and computational demands with a prospect of wider use throughout
EPOS and beyond. The climate-impact modelling has taken a similar path as it has extended its
scope to include cyclone-tracking. The support for R&D undertaken by research engineers,
provided by the DARE playground and facilitated through the Python library is critical to self-
sufficiency, innovation stimulus and sustainability.

Inevitably, there are issues that will continue as DARE and its user communities transition to a
sustainable mix of innovation and production use. Illustrative examples here are revisited in §5
and §6.

1. The application experts need to control development paths and deal rapidly and effectively
with emerging opportunities or limitations with their own teams, standard widely supported

DARE-777413 Public D2.2

 Page | 37

software and modest amounts of support from computing experts external to their
community.

2. The computational and data management resources change, differ between institutions
and users’ entitlement to use them also changes, e.g., as a result of a competitive award,
technology advances or institutional investment. Research communities, groups and
individuals need to exploit these variations without undue disruption of their methods,
working practices and knowledge infrastructure.

3. The PlayGround developments to support advanced developers and innovators are
proving their value already. They need further development, improving flexibility and
usability for those not already embedded in the DARE platform-development team.

4. Induction into the world of sophisticated data use and computation must continue and be
accelerated.

All aspects of these emerging requirements influence the architecture implementation reported in
the next section, §4. A broader issue is their link with sustainability considered in §5. Research
engineers and platform builders must use minimal new software and build on widely used
software and standards - see §5.2. However, significant new software technology is developed
by DARE. It will need to be supported beyond DARE as part of DARE’s sustainability plan. That
support will include software maintenance and expert advice. Addressing the extension of user
requirements as summarised above will increase the potential user community thereby expanding
the number of organisations contributing to that support. For example, if more of the workflow
systems used by EPOS are accommodated, if their model of catalogues interworks with the DKB
and if provenance is collected and delivered to P4 tools (§4.3) from all relevant software, the
investment in support will come from the whole EPOS community. A similar argument can be
made for IS-ENES and for similar projects, e.g., those within the ENVRI cluster of environmental
research infrastructures.

DARE-777413 Public D2.2

 Page | 38

4. Architecture Implementation
In this section we review the current DARE platform’s architecture, note the progress since D2.1
[Atkinson et al. 2018] and report on developments addressing the architectural goals in §2 and to
meet the users’ requirements in §3. The current implementation is reported in [Klampanos et al.
2020, Klampanos et al. 2019 and Spinuso et al. 2019]. The DARE platform, its APIs, examples
and tutorials are documented in a dedicated “microsite” on GitLab20. The key points are
summarised here; readers are referred to those papers for more detail and to the platform’s
dedicated website on GitLab for up-to-date documentation.

As introduced with Figure 1.1 the DARE platform has three technological pillars:

1. Workflows-as-a-Service (WaaS) help communities develop and use formalisations of their
methods. For the supported scripting notations and workflow languages it enables
authoring, debugging, validation and optimised productive use of methods. It selects
appropriate targets for enactment, prepares them, e.g., by installing the required
container, updating its configuration and initiating processing on a network of
interconnected distributed processes. This is significantly more integrated and therefore
easier to use for all stages of method development than the system reported in D2.1 and
the accommodated formalisations now include CWL and Jupyter notebooks. Its technical
details are presented in §4.1.

2. DARE Knowledge Base (DKB), has three roles:
a. Human communication, a place where practitioners in any role can leave any

information they wish for themselves or others.
b. Software communication, a place where software can leave information for its own

or other systems’ future use.
c. Human-system communication, a place where humans leave information for

software to use and where software leaves information for humans; this should
improve human-system relationships, improve understanding and enable
responsible control of quality of methods and results.

This is based on two independent catalogues: the Processing-Element (PE) registry
[Klampanos et al. 2015] for the components workflows are built from and the Data
Catalogue, as D2.1 reported. These have been developed further and used more
extensively in the current release of the platform. The current development brings these
into an integrating, flexible, extensible and incrementally adopted common framework -
see §4.2.

3. Protected Pervasive Persistent Provenance (P4) and the tools and interactions it supports.
This is intimately connected with the DKB, as it is a major repository of and source of
information about user and system behaviour. However, it warrants separate identification
because of the crucial role it has underpinning the quality of science and evidence. By
delivering reproducibility it has a stand-alone role that may be utilised by many research
communities. By supporting provenance-driven tools it significantly improves
understanding, addressing the second architectural goal in §2. These tools also reduce

20 https://project-dare.gitlab.io/dare-platform/

https://project-dare.gitlab.io/dare-platform/

DARE-777413 Public D2.2

 Page | 39

labour-intensive data administration by automating selection and providing batch
operations, thereby improving productivity. It is possible to mine information from the
growing persistence repository, for example:

a. The costs and resources used for running processes and complete methods.
b. The frequency with which each category of data is used.
c. The bottle-necks and common pitfalls encountered when performing established

or required procedures.
d. The parts of data collections or model-parameter spaces that have been explored;

perhaps alerting researchers to critical omissions.
e. The errors users exploiting or authoring methods are making repeatedly; implying

that changes should be made to help those users.

These uses of the growing wealth of provenance data have great potential to improve the science
and the methods used pursuing that science. This potential is just becoming available, but there
are also more mundane steps needed. See §4.3 for details.

These subsystems are presented below. They need to maintain consistency with each other as
detailed in D2.1 §8.4 [Atkinson et al. 2018]. Their current implementation is shown in Figure 4.1.

Figure 4.1: The structure and main components of the current DARE platform

DARE-777413 Public D2.2

 Page | 40

4.1 Workflows as a Service (WaaS)
Workflows-as-a-Service extend the functionality of typical Workflow Management Systems
(WMS) to automate set up and management of the computing facilities the WMS needs for the
requested tasks. A WMS will support all of the phases of workflow development and the repeated
enactment of the resulting workflows. A WaaS identifies the needs of a requested enactment and
locates e-Infrastructure resources to meet those needs. It then prepares them using software
deployment, configuration, interconnection and orchestration mechanisms, monitors the
enactment, organises data movement and storage, and delivers results and enactment records
to the users [Filgueira et al. 2016, Rodriuez & Buyya 2018, Liang et al. 2020]. The DARE WaaS
fully supports the dispel4py WMS and CWL specifications targeted at multi-core shared-memory
environments.

4.1.1 Concepts
The DARE platform provides all the necessary tools to research developers for them to execute
various workflow development, deployment and production-use tasks. Research developers write
code in Python, utilising a workflow language library (dispel4py21), which allows them to define
fine-grained streaming workflows of arbitrary complexity. Conceptually, a workflow is a graph that
connects well-defined units of processing functionality - processing elements (PEs). More
information on dispel4py can be found in [Filgueira et al. 2017]. Each PE defines a Python method
that describes the process to be executed. An experiment is logically divided into multiple PEs,
connected by directional arcs in the aforementioned graph. Data units flow along these arcs, from
outputs on a source PE to inputs on one or more destination PEs; order is preserved. This enables
dispel4py to represent abstractly a number of parallelisation patterns.

The main concepts of dispel4py are managed via a dispel4py Information Registry (Registry)22,
which is part of the DARE platform’s knowledge base (§4.2). The Registry is used in order to
efficiently store and retrieve workflows and enable workflow reusability. Users can create their
own workspaces and register the Processing Elements (PEs) that they intend to execute or share.
The Registry provides an API that enables creating, updating and deleting workspaces and PEs.
Before a workflow can be executed, it needs to be registered in the Registry.

In addition to dispel4py, the DARE platform supports workflows expressed in the CWL workflow
langage23. CWL defines an open standard for describing workflows across different architectures
and software or hardware environments. CWL is a process-based and more coarse-grained
workflow system than dispel4py. CWL workflows typically define pipelines of execution where at
the end of each step files are being created, some of which to be used as input in the following
step, etc. In this respect, CWL is largely complementary to dispel4py, therefore potentially
increasing the impact and usefulness of the platform. Similar to the dispel4py information registry,

21 https://gitlab.com/project-dare/dispel4py
22 https://zenodo.org/record/3361395#.Xg22gy2Q0Wo
23 https://www.commonwl.org

https://gitlab.com/project-dare/dispel4py
https://zenodo.org/record/3361395#.Xg22gy2Q0Wo
https://www.commonwl.org/

DARE-777413 Public D2.2

 Page | 41

the platform comes with a CWL workflows registry24, which is also a component of the overall
DARE knowledgebase. Due to CWL being dependent on external executables being present, the
CWL registry is able to also register execution environments as docker images and associate
them with CWL workflows. Once a CWL workflow has been named and registered, it becomes
invokable via the DARE execution API.

4.1.2 User Instructions
In order to execute a workflow, users need first to create or reuse a workspace and inside it
register the necessary PEs in the corresponding Registry (dispel4py or CWL). PEs that are stored
in a Registry can be reused in future experiments/executions by name.

The DARE platform provides a test environment, as mentioned in §3.3, in order to execute
workflows with immediate diagnostic information and direct control with the DARE platform’s
computational environment accurately emulated. This accelerates development and substantially
improves research developers' powers to investigate issues. The relevant component
(“playground”) provides two functionalities. Firstly, a user can simulate a workflow execution and
immediately check the logs and outputs of the execution. The second functionality provides the
environment to execute any command, simulating a terminal. More details are available in the
corresponding GitLab25 repository.

When the workflow is ready for execution, the user can execute it via the official API endpoint of
the DARE platform. While a workflow is being executed, the user can monitor the containers that
execute the workflow, through the API endpoint provided for that purpose. Users have their own
directory where the files are organised per execution (test and production executions use different
directories). The DARE platform through its API provides functions to list the folders and files in
those directories as well as to download any produced files (see Table 3.1).

4.1.3 Workflow Execution
The DARE platform provides workflow execution as a service via a RESTful API. In order to use
the provided services, the first step is to register the workflows in the Registry. Subsequently,
users can execute the workflows using the registered name. Users can configure the execution
parameters, for example the number of nodes required for the execution. Based on the requested
number of nodes, the DARE platform generates an appropriate number of MPI containers to
execute the requested workflow.

The DARE platform contains a Shared File System that the MPI containers can access to store
or read files. Each run is stored in a different directory. When a workflow requires additional
Python libraries, a virtual environment is generated inside the respective directory. After the
execution, all the output files are also collected in the run directory.

24 https://gitlab.com/project-dare/workflow-registry
25 https://gitlab.com/project-dare/playground

https://gitlab.com/project-dare/workflow-registry
https://gitlab.com/project-dare/playground

DARE-777413 Public D2.2

 Page | 42

Through the platform, a user can obtain provenance information in order to track what
experiments have been executed, as well as to obtain the input and output data. The DARE
platform provides a user interface on top of the provenance API and storage, where the user can
view the executions and the data produced in the platform (§4.3).

4.1.4 Future Work - Optimisations
In the preceding sections, we have summarised the current state of the DARE platform. In the
next phase of the DARE project we will improve the use of the shared file system by separating
the executions of a user based on the respective experiments (see §4.2). Users should not need
to specify platform- or implementation-specific details, such as the number of processes to be
utilised. These matters will be investigated as part of the workflow-optimisation effort. They are
important for method portability and durability. They will also reduce the distractions of underlying
detail, initially for application-domain users and eventually for research developers when they
trust the automation.

Another aspect of our work on optimisations is to enable dynamic deployment of dispel4py
workflows. Currently, during enactment and prior to execution each PE is translated into one or
more PE instances (an executable copy of a PE with the input and output ports running in a
process as a node in the data-streaming graph), depending on the number of nodes to be utilised,
and once assigned a PE instance to a process, it can not be changed during the execution. The
main inconvenience of this static deployment, is that if a PE during its execution needs to be
mapped to more processes (e.g. the data-rate consumed/produced by a PE has increased more
than expected) or to fewer (e.g. a PE is just executed in few occasions) processes, we can not
do anything about it apart from manually intervening to stop the current execution and re-assign
the process to PEs either manually or by applying an assignment algorithm based on previous
executions. This is clearly costly in human effort and computational resources compared with
preemptive adaptation.

By enabling dynamic deployment and enactment of dispel4py workflows, PE instances will not be
locked to specific processes, scheduling PE instances on-the-fly, meaning that if a PE needs
more or less “resources”, it will dynamically up-scale or down-scale, rebalancing automatically the
graph, without stopping the workflow execution. To do so, we are planning to implement the work-
stealing scheduling strategy26 [Frigo et al. 1998, Mattheis et al. 2012]. A mechanism to provide
load balancing in case of dynamic workloads, which offers several benefits (e.g. data locality,
scalability) in terms of efficiency and usability. It has been employed in a number of frameworks
for parallel programming, e.g. as Intel Threading Building Blocks (Intel TBB27) or GrPPI [Dolz et
al. 2018], and has found a variety of applications, from simple divide-and-conquer algorithms to
more complex stream processing applications [Anselemi & Gaujal 2009, Navarro et al. 2009].
This work will create a new dispel4py enactment mapping, based on ZeroMQ message queue28,

26 https://en.wikipedia.org/wiki/Work_stealing
27 Intel TBB https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-
intel-tbb
28 ZeroMQ https://zeromq.org/

https://en.wikipedia.org/wiki/Work_stealing
https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
https://zeromq.org/

DARE-777413 Public D2.2

 Page | 43

which will implement a runtime work-stealing scheduler to execute the different PEs respecting
dependencies and balancing the parallel workload. The concept of affinity will be exploited in this
new mapping to ensure locality-aware scheduling.

4.2 The DARE Knowledge Base (DKB)
The DARE Knowledge Base (DKB) is an integration and packaging of the information repositories
that developers and application domain experts use. As introduced above, the DKB is there to
help communities cope with immensely complex, diverse and evolving information that is the
context for their research. For research to be authoritative and relevant it has to be embedded in
established global knowledge based on years of collaborative work [Edwards 2013]. This
becomes more challenging as the knowledge infrastructures of different disciplines collide in the
cauldron of multi-faceted, multi-disciplinary global and societal challenges. Urgent problems and
scientific explorations require agility, the ability to make quick changes to the parts of the
information space where innovation is taking place. The DKB must combine those stable contexts,
often formalised by global agreements and established information services, and the dynamic
intellectual workbenches where new ideas are tested and new methods created.

The DKB’s design is described in [Atkinson et al. 2020a, Atkinson et al. 2019]. There will be one
instance of the DKB per DARE platform deployment. The current developments can be found in
the GitLab repository for the DKB open-source software29 and in those for the other information
sharing facilities, described in §4.2.4. A user manual (URM) [Levray 2020] provides up-to-date
definitions of the DKB Python functions intended for use by all users, services and tools with
introductory examples. More abstract structures with their functions may be built using this library.
The user manual also has installation instructions for those who wish to use it as a stand alone
service or with a selection of services.

4.2.1 DKB requirements
The DKB should deliver the following benefits compared with developing and using individual
information-sharing subsystems directly:

1. Easier for application-focused users to extend and use - they should be able to directly
create, change and use their shared information to help them organise their production,
collaboration and innovation work.

2. Provide incremental support for adoption so that current developed practices, catalogues
and information-sharing frameworks can sustainably co-exist with DKB use30. Users and
developers will decide when they use existing information services directly and when they
or their software works via the DKB. In the latter case, they can make local changes in
one place to accommodate changes in the used service or to add functionality.

29 https://gitlab.com/project-dare/dare_kb.
30 In DARE these include the Registry, the Data Catalogue and the Kubernetes catalogues. The
relationship with P4 is complex and under development. Each user domain also has its established
archival practices and data-exchange standards.

https://gitlab.com/project-dare/dare_kb

DARE-777413 Public D2.2

 Page | 44

3. Progressively raising abstraction improves understanding, portability and durability. It
protects those who use it from unwanted external changes and distracting technical detail.
This also enables DKB implementers to re-engineer their mapping to services to
accommodate and exploit external changes and to address issues identified by users, with
less disruption to ongoing production and development work.

4. Boundary crossing, experts from different disciplines need to collaborate to develop
innovations and advances in complex and challenging campaigns. The DKB should
deliver the support for CSCW boundary objects where their work overlaps, while delivering
as much freedom as possible to experts where it doesn’t.

5. Commonalities between and within communities can be discovered and exploited.

The DKB has to comply with the following constraints:

1. It must be open ended because the paths researchers, developers and communities will
take are unpredictable - this mirrors Linked Open Data (LOD) represented by RDF31.
However, within the DARE KB we underpin this freedom with a consistent foundation and
accelerate productive use with a conceptual library, intending to get the best of both
worlds.

2. It must be directly controllable and manageable by application communities as this makes
them more self-sufficient, with agility (speed of response to needs and opportunities) and
less dependent on technical experts. This means that the formal underpinnings and
implementations must be well hidden.

3. It must, nevertheless, facilitate sustained productive collaboration between application
and technical experts, as identified by Trani for the EPOS RI [Trani et al. 2018]. This
means that the formal underpinnings and implementations must be understood by experts
in their use and in the aspects of technology they are used to describe.

4. It cannot require a ‘green field’ site; it must operate in conjunction with existing information
stores, operational software and established professional practices.

5. Constraints 2 and 4 imply that it cannot take full responsibility for correctness and
consistency. It should do this for information entirely assembled via its functions. It may
also support methods for verifying consistency that developers and others may employ.

6. It must persistently retain information entrusted to it, while respecting the structure and
dynamics of the organisations that contribute to and use the DARE platforms. This means
reflecting the recursive pattern of commonalities and releases while retaining all local work
accomplished in the context of earlier releases. This requires methods for preserving the
work so far, installing the new releases and adapting to any changes as it restores local
work. Discrepancies encountered during these procedures must be referred to relevant
users.

7. It must be sufficiently fast to meet production and concurrency requirements.
8. It must be sufficiently protected to prevent tampering, leakage of private or confidential

information, and loss by accidents and user errors.

31 Resource Description Framework (RDF) https://www.w3.org/RDF/

https://www.w3.org/RDF/

DARE-777413 Public D2.2

 Page | 45

Within these goals and constraints, the DKB was co-designed and co-developed with DARE
platform and application developers to establish its immediate relevance and path to adoption.

4.2.2 DKB roles
The term ‘DKB’ in this section refers to the composition of the logically centralised integrator and
the co-existing other information services. Four low-level roles are supported:

1. Any user32 may enter information into the DKB for their own or other users’ future use.
2. Any user may enter information into the DKB for software’s future use.
3. Software may enter information into the DKB so that it informs users - with appropriate

adaptations for the target recipients if at all possible.
4. Software may enter information into the DKB for its own or other software’s future use.

We therefore introduce the generic term “Instance” for any item of information considered as a
unit by the agent that enters it. As for other data, we then need to manage the lifetime of each
Instance. Some of the transitions envisaged during such a lifetime are shown in Figure 4.2.

32 Acting directly, e.g., using a Python function in an interactive Jupyter session, or interactively via
intermediate software.

DARE-777413 Public D2.2

 Page | 46

Figure 4.2: State transitions during the life of a DKB Instance. Not all are shown. The external
initiation of an action causing a transition is only shown for the initial creation, but transitions are
normally initiated and controlled by external agents. Research developers perform much of their
work in Git-managed spaces, so many of the imports will be from such spaces.

The implementation of these functions is an appropriate combination of the following
mechanisms.

1. Delegation, the direct presentation of a function of some information service or a wrapped
request for that service, e.g., to handle simple format changes.

2. Local action, the representation of the relevant information entirely within the DKB service
with changes to that information required to implement the action. Normally, actions
implemented within the DKB will be atomic, i.e., the state change is complete or there is
no change.

3. Harvesting, the acquisition of required information from an external source that is then
held locally. This will be a snapshot. The external service may later change the source

DARE-777413 Public D2.2

 Page | 47

data33 making the snapshot out of date. This may be semantically significant, only a user
can decide which value is now the required one.

4. Querying, sending queries to one or multiple sources and then combining and
transforming the results returned.

5. Caching, conducting queries, as in harvesting and querying with a policy for discards from
the cache, to limit local resource use or to reduce the risk using out-of-date results.

6. Proxying, the DKB represents aspects of an information service as if they are local based
on agreements with that service, ideally supported by digital or human protocols. It then
presents the selected service locally, potentially introducing adaptations when details of
that service change, but otherwise representing it accurately.

In some cases the implementation may combine these using a workflow mechanism.
Consequently, the relationship with the provenance system, P4, needs careful design to avoid
unwanted behaviour. This is revisited in contemporaries (§4.2.4) and in DKB R&D (§4.2.5).

When fully exploited the methods created by research developers will use the DKB frequently.
The interpretation of user actions, developer actions and the coded methods will all interrogate
the DKB to translate into finer-grained actions, to map to evolving infrastructure and to optimise
based on accumulated information about prior work, about users, about services, about software
and about data. This is illustrated in Figure 4.3.

Figure 4.3: The DKB acting as an intermediary throughout the initiation and enactment of a
sophisticated method steered by and reported to a DARE platform user. The numbered stages of
this process are described below.

Figure 4.3 depicts a future DARE platform where the DKB is used intensively.

33 Protocols may be introduced to detect and warn of this divergence, but they are not
standardised or commonly available - they should exist for DKB contemporaries (§4.2.4).

DARE-777413 Public D2.2

 Page | 48

1. A user, using a tool such as a Jupyter notebook, requests an action in a form suitable for
them. Similarly, an action may be requested by some external or internal software.

2. The request with parameters, etc., arrives in an agreed form at the DARE platform API.
Entries in the DKB describing methods and built-in functions automatically populate this
API.

3. The DKB retrieves information about the identified method, parameters, and referenced
data. It passes this to the WaaS, which may use this information, may request more and
may write records for subsequent parts of this enactment or future similar enactments.

4. The WaaS receives the request and may request further information from the DKB in order
to optimise, map to a target technology and to deploy and configure the required virtual
infrastructure34. It may consult the DKB for descriptions of potential targets the requestor
is authorised to use. It will ask the DKB about past costs to estimate expected costs.
Harvesting-processes may scan provenance data to summarise past costs.

5. During the conduct of the workflow, information gathered by P4 will be transformed using
DKB data about the requestor’s preferences. Similarly, incoming steering actions will be
translated using DKB information. Engaging the DKB in the information flows from the
DARE platform and running software is a crucial innovation. It is during such flows towards
users, particularly when failures are reported, that systems expose technical detail that
was abstracted away in input flows. Mapping these to forms that are easily understood by
the interacting user is essential35. Otherwise, users have to learn to understand them.
They may then exploit them in their future work, locking their methods into a particular
technical context. At the very least it is a distraction. However, developers may want them.
Hence the tailoring to the current user.

6. The final records written in the DKB will link up the run with the provenance records and
with results and if they were specified in the run’s profile, intermediate data sets normally
discarded. If a user chooses to consult the results and diagnostic data at any time in the
future, the DKB will ‘know’ where they can be found, how they can be retrieved and
transformed for that user.

Each deployed instance of the DARE platform will have its own DKB instance as shown in Figure
4.4.

34 This may require integration with the orchestration technology, currently Kubernetes (see §4.1 & §5.2).
35 By working via P4, the mapping is from one standardised, PROV-O representation that avoids higher-
level tools and platform elements having to work with the vast diversity of system monitoring data.

DARE-777413 Public D2.2

 Page | 49

Figure 4.4: A typical deployment of a DKB maintains relationships in two forms. New applications
and tools developed using the DKB maintain consistent information in it - solid arrows. Legacy
systems and external systems controlled by others will not have complete information in the DKB.
It will hold only the relevant aspects when last used - dashed arrows.

This incomplete information is an inevitable consequence of supporting research and innovation
that may lead anywhere36. The quality and reliability of DKB information therefore depends on the
care and precision of its developers and users. To mitigate the risk without constraining users
with an excessively rigid regime we partition the DKB information space into research contexts,
Contexts for short, that are the analogue of file-system directories and workspaces.

4.2.3 DKB contents, structure and functions
Users37 are free to record any information in the DKB that they choose. However, that freedom
has three problems:

1. It takes far too much effort before the benefits are available to most users.
2. It is hard for anyone else to understand what has been done.
3. Optimisation is limited to the regularity which software can uncover.

These are addressed by the following mechanisms:

1. Built-in regularity in the properties and management of every Instance.

36 It is also necessary because the DKB has to be introduced into operational contexts and it will not
‘know’ about everything that is going on.
37 This includes any software that writes to the DKB.

DARE-777413 Public D2.2

 Page | 50

2. Contexts over which users have total control; these range from very stable contexts
denoting selected aspects of the knowledge infrastructure to ‘lab-bench experiments’
exploring a new insight.

3. A specifiable inheritance of information from other Contexts.
4. Local naming within Contexts.
5. Global persistent identification using automatically generated PIDs.
6. A conceptually organised library provided with releases of the DARE platform.

Instance specifications
The Instance as the unit of recording was introduced at the start of §4.2.2. It will have a set of
built-in attributes several of which are set automatically. These are illustrated in Listing 4.1.

 “Common attributes of every Instance in a DKB”
 name: String # name unique in a Context
 prefix: String # its prefix is unique in this DKB installation
 pid: String # persistent exportable identifier
 instance_of: Concept # every Instance is an instance of a specified Concept
 timestamp: Instant # when the Instance was created or changed
 state: String # where it is in its life
 predecessor: Instance # if an Instance updated, PID of previous version
 successor: Instance # PID of the next version of this instance

Listing 4.1: The built-in properties of every Instance see [Levray 2020] for details.

Users may add any other data in an Instance supplied as a Python dictionary. This is supported
and controlled by a conceptually organised library provided to meet common requirements. It may
be extended by communities and user groups to help with their additional recurrent needs or to
specify how their information should be organised38. To encourage this we establish Conceptual
modelling through the conceptual library39.

The chaining of versions when an Instance is updated, is intended to allow stand alone uses of
the DKB to work without a separate provenance capture system. The DKB will provide simple
functions for which this record keeping is efficient. They will normally be atomic and affect only
local state.

Persistent Identifiers (PIDs)
The PIDs are manufactured as shown in Figure 4.5.

Figure 4.5: The structure of the PIDs manufactured for each Instance

38 For example, seismology groups might establish a Context holding the FDSN features they use and
another holding the OGC features they use. Groups and individuals would add these to their Context’s
search paths.
39 Of course, the conceptual library provider may build this by using the Entry functions.

DARE-777413 Public D2.2

 Page | 51

Precise and persistent identification of anything in a user’s or a software system’s world is
essential to ensure unvarying interpretation of those entities when required, e.g., to ensure that
an established practice is conducted consistently or to achieve reproducibility. The DKB takes on
this responsibility by forging, preserving and interpreting PIDs. As users and software may copy
references to Instances in the DKB, this interpretation cannot depend on local addresses or
current storage arrangements. The first part of the PID identifies the particular installation of the
DARE platform where this DKB service is employed. If this identity, when expanded, meets PID
guidelines, e.g., those espoused by the PID forum40, then the Instance identity will also meet
those, i.e., both will be URIs. But each user community will choose how formal to make their PIDs
and how much to invest in ensuring the longevity of their interpretation. The context prefix is a
string guaranteed to be unique in this DKB instance41. The uniqueness counter ensures
successive updates to an Instance have a different PID42, i.e., a PID identifies a specific version
of a specific instance. The user’s identifier is the name given by a user, e.g., as an identifier in
their Jupyter notebook. The DKB can act as a proxy for an external information source or a
contemporary service and forge a local Instance with a PID containing a reference to that external
service. It may hold timestamps and signatures of the referenced entity to detect autonomous
mutation. We now have the machinery in place to build and use research Contexts.

Context specifications
The primary role of research Contexts is to gather a set of Instances to provide a work context
well adapted to a particular user working on a particular task. They also represent the common
requirements of multiple users, e.g., members of a group working on a common problem, or of
multiple similar activities, e.g., repeated performances of a standard procedure. This is achieved
by nested Contexts with specified inheritance from outer Contexts, as shown in Figure 4.6, where
we see an additional Context for each user community and an upper-level, dare, common to all
DARE applications, which in turn builds on a universal conceptual library, kb, and pre-imported
bundles from standard sources.

40 https://www.pidforum.org/
41 It may also have a defined expansion for URIs in ontological representations - behind the scenes.
42 An index from PID to Entry would accelerate DKB operations.

https://www.pidforum.org/

DARE-777413 Public D2.2

 Page | 52

Figure 4.6: The nesting of research contexts, progressively forming work environments that are
highly tuned to an activity, an individual or both.

A Context has a prefix that is unique in the DKB installation. It may have an initial population of
Instances. These may be updated, added to or discarded as the Context is used. Each Context
has a specified search path of other Contexts, e.g., [‘seis’, ‘dare’] for Context ‘ann’, to arrange
inheritance, and to specify overlapping interests. If users wish to inherit from a Context c, with
prefix ‘c’, adopting all of c’s inherited Instances, they simply specify [‘c’] as the search path. This
is the default, if they are in Context c when they make the new Context. The effect is transitive.

The uses of Contexts include:

1. Importing a bundle of terms and related entities into a KB, as illustrated by three Contexts
in the second row of Figure 4.6. These may then be used in any search path and be
separately maintained, e.g., to reflect changes issued by the authoritative source.

2. Denoting a set of shared terms and resources, as illustrated in the next two rows of Figure
4.6. Communities may govern how these are maintained. Explicit references using a full
PID delay the impact of changes in such Contexts.

3. Providing a work Context for an individual, a group or a procedure, that is progressively
tailored as it is used to better support that work. Illustrated as the bottom two rows of
Figure 4.6.

4. Providing a method enactment Context (not shown in Figure 4.6). Methods are repeatedly
run with the same or different parameters. The method needs a new Context for each run,
so that it can use the same set of names each time, differentiated by the automatically
varied prefix.

5. Acting as a boundary for access controls and authorisation. The Context can have a
consistent aspect of sharing, privacy, confidentiality, etc., and an owner or governance
body can set that.

DARE-777413 Public D2.2

 Page | 53

6. Supporting a user-controlled transaction. The updates to all Instances within a Context
from a defined time (denoted by the uniqueness counter) to a chosen instant can be
considered together, e.g., to be ‘pushed’ to persistence or to be retracted43.

An Instance in an explicit Context, not necessarily in the search path, may be specified as
<prefix>:<name>, e.g., ‘cath:eqEvent20190723’ from Ann’s context to refer to the latest update
of the earthquake event Cath is working on. A platform may provide functions, e.g., publish, to
reveal such Instances and to control visibility and mutability. Within such constraints, a user may
specify an explicit version using its PID, e.g., to freeze a method in an authorised form, while
others are developing and releasing a future version.

When a user interacts with a DARE platform they use a specific Context44. To facilitate induction,
they may be allocated a clone of a group’s Context when they first start work. Their work will
modify their current Context so that all new things they create and revisions they make appear in
their Context. As searches are by name in the local Context first, and then in each Context along
the search path, when DKBs are mature they will start in a rich and productive Context. They can
proceed uninhibited to use names and create Instances as these are local to their Context.
Innovation is uninhibited, since they can redefine things named along the search path and thereby
hide them and experiment with new forms.

However, this does not support collaboration. That has to be done, by publishing new things to
‘friends’ and then they explicitly name them using your prefix, e.g., to confirm that what you have
done is valid and useful in their Context, or to conduct the next authoring steps. When authorised,
validated and valuable Instances may be promoted to a higher shared Context others in a group
can then use. Authorised users will explicitly visit a Context, e.g., to work directly on a shared
context, to move between production and innovation, to maintain a shared Context or to help
someone solve a problem45.

The methods for conducting routine repeated processes start by cloning a Context containing the
Instances that differ for each repetition, so that they are grouped under the new Context’s prefix
identifying the repetition with the same local names for every repetition. A user responsible for a
number of these running concurrently will move between them. Details of the operations on
Contexts may be found in the URM [Levray 2020].

Contexts are not static snapshots. They continue to change. Users and methods may exploit this.
For example, they group a bundle of changes during an experiment or while a method runs. If
these are all to be discarded, the Context that holds them can be discarded. Similarly, if they are
to be retained, the Context may be archived. A Context associated with a method under
development can be readied for reuse with a reset function.

43 Uses 5 and 6 will not be attempted in the initial prototype.
44 Normally the one they were using last time, which involves their identity being obtained via AAI and this
being mapped to their Person PID in the DKB. This needs inclusion in the platform’s login API.
45 This is a common requirement for support staff. It may require permission from the Context’s owner.

DARE-777413 Public D2.2

 Page | 54

Conceptual library specifications
Whilst users and software have the option of using the DKB in completely novel ways, there are
compelling reasons for providing an initial library of Instances all in the Context ‘kb’, as they span
potential KB platform uses. This will reflect invariant properties of the platform and universal
aspects of the knowledge infrastructure. The commonalities expected in the variety of DARE
applications will then build a Context ‘dare’ that exploits ‘kb’, see Figure 4.6. These introduce
several groups of Concepts. We focus on Concepts, e.g., Energy, Temperature or Country, as
they underpin thinking and communication in humans.

We expect a body of well-established and widely adopted Concepts to underpin every research
community; developed and sharply defined in their minds by their education and training and
reflecting their knowledge infrastructure. This enables them to communicate and think effectively,
as they use words with those precise meanings. In the DKB we intend that they should use those
same terms as easily and precisely; building on Trani’s work with EPOS [Trani 2019, Trani et al.
2018].

Contexts enable different groups to use different terms or the same terms differently. In due
course, to enable boundary crossing and novel interworking between disciplines without
excessive consistency requirements that slow innovation in multidisciplinary collaborations. The
DKB will need an underpinning metadata translation and cross-referencing framework, to enable
collaboration and innovation to co-exist productively. The requirements and a viable approach are
well illustrated for Europe’s museums collections of natural science specimens [Lannon et al.
2020]. The EU VRE4EIC project demonstrated the automation of metadata translation to deliver
an integrated view of catalogues [Martin et al. 2019]. We need to build the foundations of the DKB
and establish its initial use before these issues can be explored. Current thinking looks at
immediate needs. The need to have variety and consistency, stability and innovation co-existing
and flourishing together will emerge as soon as sustained use for a research campaign is
attempted [Ramakrishnan 2018] (see page 263).

As research progresses the revision and refinement of the Concepts is inevitable. The DKB
supports and stimulates those Conceptual refinements by enabling application communities and
individuals to directly shape their active repertoire of Concepts.

We provide a Concept library prepopulated with Concepts and a structure relevant to data-
intensive and computationally intensive research campaigns. Building on these, a research
campaign or community will develop a sophisticated and highly tuned set necessary for their
research. We expect this to become a significant intellectual and practical asset. Groups,
organisations and specialists will also build on the initial foundation, on existing and contemporary
developments and on imported bundles of relevant knowledge. The common starter includes:

1. An initial set of Concepts, some of which have instances, to provide users and application
domains with common information and organisational structure that they will need.

2. Concepts that are examples to help those developing the use of the DARE platform, for
themselves or for sub-communities.

DARE-777413 Public D2.2

 Page | 55

3. Support for consistent structures, particularly for handling Collections, to provide
optimisation opportunities and to steer users to well supported or efficient methods.

The conceptual library will also present an API with Python methods for basic Actions to change
the state of the DKB. These include:

1. Actions on Concepts to define them and their relationships, evolving them and managing
their lifetimes.

2. Actions on instances of Concepts, creating them, finding them, interrogating them and
updating them.

As the definitions of refined Concepts and sophisticated Contexts develop new functions specific
to particular Concepts and methods composing basic functions will be introduced. It is intended
that user communities will become self-sufficient, initially in using the basic functions and
eventually in refining them and in maintaining sophisticated Contexts and home grown Python
encoded Methods. To enable this, once published, new Concepts, new functions and new
Methods should automatically become available in the API. Eventually their use may be controlled
by authorisation mechanisms, but initially we will depend on communities collaborating with
careful consideration for their colleagues. This is only feasible while the user community is small.

It will be possible to build more complex and longer running Methods out of these basic functions
and other Methods, including those in any workflow system that DARE supports. Some of these
may be used to manage aspects of the DKB, e.g.,

1. Promote a set of revised Concepts and instances from an innovation Context to a shared
Context.

2. Import a bundle of information from an authoritative source, such as a curated ontology,
creating a Context to represent it.

3. Build a Collection representing the current Python loaded libraries.
4. Compare two such Collections and report on their differences.
5. Visualise the tree of specialisations of a particular Concept.

Such Methods will be implemented when needed. When they are not simple functions46, they will
need to record progress in a provenance service, such as P4.

It is intended that DKB users will be able to do everything that they need to do in this way, i.e., by
working in Contexts, by building on provided Concepts, and by composing basic functions and
Methods built ultimately from basic functions. At the same time, the DKB should help experts
serve application communities by supporting Contexts containing the Methods and information
they develop, e.g., workflows, so that their products may be used straightforwardly. Data
architects, data scientists, systems specialists and software engineers may also work on critical
Instances once they have stabilised and proved useful, to improve their performance, reduce their
costs and improve their provenance tracking. A future development made feasible in the DARE
project.

46 For example, they may fail after changing some of the persistent state, and provenance records will be
needed to support attempts to complete the work or to undo what cannot be completed.

DARE-777413 Public D2.2

 Page | 56

Concepts are introduced as they reflect established ways of thinking and communicating in
application and technical fields. They often have agreed names, developed in the application’s
culture and global consortia and corresponding to an authorised terminology47. For each
viewpoint/use of a Concept they have properties used by practitioners. The DKB supports
communities and individuals agreeing and using their Concepts as shown in Figure 4.7. Note that
an application community will have familiar Concepts, with well understood names, that are
understood by them, but not by the systems team that enables their computational and data-
driven work. Similarly, those system experts have their own vocabulary, Concepts and properties
that they understand. The points where these worlds overlap, called “boundary objects”, are vital
for effective collaboration, and have to be well supported by the DKB.

In some senses, Concepts are similar to classes in object-oriented programming. Indeed users
may be helped by being able to use Python classes in the programs corresponding to the
Concepts they are using, with instances of each class corresponding to instances of Concepts.
The extent to which the DKB system will automatically support this has yet to be decided.

Figure 4.7: Showing the CRP methodology to develop and manage concepts shared by a
collaborating research community (taken from Fig. 5.2 [Trani 2019]).

47 These precise terminologies may draw on and implement LOD ontologies, but it must not be a
requirement to understand ontologies and OWL to use the DKB. However, experts in that approach
should be able to help users using their knowledge. For example, they may develop and use methods to
import authorised ontologies directly into the DKB and ready for production use.

DARE-777413 Public D2.2

 Page | 57

Having decided what Concepts they need, users choose the properties that they consider
important, and how they would like them to be represented consistently. We envisage three
categories of attributes:

1. Mandatory, ones that must appear in every Instance in addition to the universal attributes
(see Listing 4.1). This has the effect of specifying the name and the form of each attribute.
It will trigger an error if an instance is made which does not have the attributes in the
correct form.

2. Recommended, are properties that should be present in every instance, this has the effect
of specifying the name and form of the attribute and may have the effect of prompting
users to supply values for these attributes in each instance.

3. Optional, is a category of attributes that may be included. This specifies the name and
form to be used whenever an attribute appears in this Context with the given name.

Concepts, may specialise other Concepts, e.g., SpecialWidget may inherit from the definition of
another Concept, e.g., Widget. In that case, instances of SpecialWidget may appear whenever or
wherever instances of Widget are required.

There are substantial conceptual, organisational and practical advantages from delivering in the
library a harmonised bundle of Concept, Method, Data and Collection Instances. We anticipate
each platform release will include advances in this bundle. Please consult [Levray 2020] for more
information.

4.2.4 DKB contemporaries
These include the data catalogue and the Registry. They also include some aspects of the P4
provenance handling framework described in §4.3. They provide two valuable aspects to the
design and development of the DKB:

1. As well-established and populated subsystems they provide a significant part of the
required functionality.

2. They also ensure that the DKB does not require a ‘green field’ operational context, as
cooperating with complex contemporaries is essential for long-term adoption.

Data Catalogue
The DARE data catalogue has been operational throughout the platform’s development and
provides basic services for recording information about the files in use. This has been enhanced
and extended as the DARE Semantic Data Discovery Service.

The Semantic Data Discovery Service builds on the Data catalogue component of the DARE
platform. The Data catalogue stores metadata about datasets in DARE described with the
Resource Description Framework (RDF) model, which conforms to the Data Catalogue
Vocabulary (DCAT). Currently there are only low-level interfaces to these datasets, provided by
the RDF database Openlink Virtuoso (SPARQL, ODBC, JDBC, ADO.NET, OLE DB, etc.). The

DARE-777413 Public D2.2

 Page | 58

complexity and low-level nature of these interfaces inhibits the full use of the Data Catalogue’s
information.

The Semantic Data Discovery service should enable a user to access the data stored in the Data
Catalogue conveniently. To achieve this goal the application scans recursively through the
existing datasets, indexes all known information patterns found and provides an interface to
search this data. The Python code provides functions, such as trigger indexing, deleting the index
and starting a search. These are accessed via a REST API using the Python web development
framework Flask48 and are exposed by OpenAPI Swagger49. To create, manage and use an
index, the search engine Apache Solr50 is used. This offers a wide range of functions including:
simple text-based search, a search by date or by geo-location. It is easy to add vocabularies51 to
meet the need to be open-ended, as a wide range of specialised linked data vocabularies may be
used. The implementation architecture is shown in Figure 4.8.

Figure 4.8: The architecture of the Semantic Data Service extension to the Data Catalogue.

48 Flask https://www.fullstackpython.com/flask.html
49 Swagger https://swagger.io/docs/specification/about/
50 Apache Soir https://lucene.apache.org/solr/
51 This is done using a configuration file.

https://www.fullstackpython.com/flask.html
https://swagger.io/docs/specification/about/
https://lucene.apache.org/solr/

DARE-777413 Public D2.2

 Page | 59

In the future, a web GUI should be placed on top of the search, for example comparable to the
European Data Portal52. An integration with the provenance database is also planned. A further
extension could be the integration of external Data catalogues to meet known requirements for
the climate or seismology communities. This can be done as a change of configuration, as long
as the data exist with the vocabulary DCAT and are provided through a SPARQL endpoint.

Registry
The registry is a part of the DARE platform that coexists alongside the DKB. As do the provenance
system and the Data Catalogue. The previous item discussed the relationship between the Data
Catalogue and the DKB. Here we focus on the Registry’s relationship with the DKB. We then
consider the relationship with provenance.

The registry was developed in the VERCE project53, where authors of [Klampanos et al. 2015]
prototyped the dispel4py information registry to facilitate consistency and collaboration in
workflow development54. Consequently, the current state of the registry is strongly linked to
dispel4py. The current version is implemented in Django55, a Python-based Web framework and
is linked to a relational MySQL database server. The current usage allows for the development of
workspaces, and the storage and production of information regarding workflows.

The registry is currently used in the DARE platform via an API, to register workflows, (i.e., register
PEs of the workflow). It also can execute and monitor the runs of the workflow, i.e., use the
provenance system to stream provenance traces at run time. The main functions of the API are
given in Section 3.3.

As mentioned, the registry deals with the notion of workspaces. In its design, workspaces refer to
a snapshot of whole sets of components linked to registry (including the registry) to allow for
refined, specific, user-defined context work. In that sense, the idea of workspaces in the registry
is closely related to the definition of contexts in the DKB.

In order to make use of the DKB and registry together, it is critical to link those two definitions. It
is also important to add more specificities either to the registry or to the DKB so that its uses cover
more than dispel4py. Indeed, the idea is for users and developers to be able to register methods
in any format they desire, including: bash script, python script, CWL, dispel4py, etc. So far, the
CWL option has been included as a logically parallel service.

Relationship with P4
The provenance system runs a database into which it collects information from many runs and
from different technologies into a standard form §4.3 and [Spinuso 2018]. It also collects metadata
associated with runs specified by users, supports tools for examining and visualising these

52 https://www.europeandataportal.eu/
53 http://www.verce.eu
54 More information can be found in https://zenodo.org/record/3361395#.XfjPVOvgrUZ.
55 https://www.djangoproject.com

https://www.europeandataportal.eu/
http://www.verce.eu/
https://zenodo.org/record/3361395#.XfjPVOvgrUZ
https://www.djangoproject.com/

DARE-777413 Public D2.2

 Page | 60

records. It can be accessed by a set of web-service functions including specific requests to export
selections of its data in standard formats. Consequently, it is performing the role like that of the
DKB: there are therefore two directions of development to consider:

1. Independence, each develops independently and users/developers tackle the integration
of their functionalities. Even with this approach they still need to coordinate, cross-
reference and align their treatment of entities that they both handle.

2. Integration, where they converge through co-design, so that eventually users and
developers see them as one system that they use unaware of the two subsystems.

Integration is clearly the desirable long-term goal, but it is so challenging that a period56 of
independence but convergence is needed before it is attempted. The necessary interdependence
will need to progressively deliver:

1. Coordination, e.g.,
a. notification to P4 from DKB when it starts a com[plex function that needs

provenance,
b. notification to the DKB and P4 when the WaaS detects completion or failure.

2. Cross-reference, the following examples indicate what will be needed:
a. References that the DKB can use to refer to traces in P4, preferably PIDs,
b. References (PIDs) P4 can use, to refer to entities identified via the DKB, preferably

with known fixity.
 The timing of PIDs being allocated and being used in each subsystem, as well as the
 decisions as to which entities require PIDs, will need to be worked out as the alignment
 is developed.

3. Alignment of representations, such as:
a. Identification of individuals and representations of attributes both use.
b. Identification of sessions and representations of attributes both use.
c. Ditto for computational environments, containers, deployments, software, data and

services, etc.

This convergence should be achieved incrementally in co-design and co-development closely
aligned with pressing requirements from use cases, e.g., as identified in §3.4.

4.2.5 DKB Status and Potential
The current status of the DKB is that there are three mature, operational subsystems: data
catalogue, registry and the provenance system independent from one another and a prototype
general-purpose DKB that has yet to contribute to progress beyond beta testing in one pilot
context. It is clear that users, particularly research developers, would benefit from increased
automation and integration (see §3.4). As explained above, the general-purpose and directly
manipulated DKB should help those extending and developing data-intensive and
computationally demanding applications in the context of existing systems and established
practices. The co-development and experimentation with WP6 suggest this potential is a short

56 Almost certainly longer than that remaining in the DARE project.

DARE-777413 Public D2.2

 Page | 61

step from being fully available. This is precisely what DARE promises to provide and we should
therefore use the opportunity to develop the general-purpose element of the DKB:

1. To help the domain esports and research developers in our user communities and in
successors to DARE, and

2. To use DARE to progress to the point where the general-purpose element of the DKB has
proved to be useful and feasible, so that it is both sustainable and a good foundation for
future work.

General-purpose DKB implementation
The general-purpose DARE knowledge base (DKB) is implemented as a RESTful Flask web
service (microservice) and a Python library to help users build clients. The open-source code can
be found here https://gitlab.com/project-dare/dare_kb. The functions provided to create, access
and manipulate contexts, concepts and instances are described in the User Reference Manual
[Levray 2020]. These can be used directly but they have also been proven efficient and useful
when used (see below) in an experimental version of the DARE manager located here
https://gitlab.com/project-dare/exec-api/-/tree/dkb_incorporation.

The information in the DKB is represented as an ontology, which helps collaborating researchers
develop a common vocabulary. There is an initial version on which they build suitable for the
communities DARE supports. It is a language that allows for formal specifications of concepts
and the relationships between them. The reasons for using ontologies in general are57:

● To share common understanding of the structure of information among people or software
agents

● To enable reuse of domain knowledge
● To make domain assumptions explicit
● To separate domain knowledge from the operational knowledge
● To analyze domain knowledge.

The DKB provides functions for directly describing concepts and their properties using Python
functions familiar to our user communities without them being aware of the ontological
underpinning. They can then build and update populations of instances of their concepts capturing
whatever data and relationships they require.

This information is stored in SQLite3 via owlready258. The implementation delivers the novel
information-structuring mechanism, context, and organises the way contexts use the contents of
other contexts. We create all concepts, instances and their relationships within nested contexts,
allowing lower levels to work on specialised research and upper levels to hold broadly shared
information.

The DKB is very similar to many contemporary knowledge bases, i.e., it organises sets of entities
and the relationships between them represented in a graph database often using OWL or other
LOD representations. However, the DKB offers a significant innovation, a user or community

57 https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
58 owlready2.readthedocs.io/en/latest/

https://gitlab.com/project-dare/dare_kb
https://gitlab.com/project-dare/exec-api/-/tree/dkb_incorporation
https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
https://owlready2.readthedocs.io/en/latest/

DARE-777413 Public D2.2

 Page | 62

controlled contextualisation structure, that could, in principle work with or be overlaid on any of
those knowledge bases. This delivers substantial benefits in enabling collaboration and
independence to coexist, and in supporting the range from established stable knowledge to
exploratory experiments.

DKB demonstration
Working closely with WP6 we have developed an experimental demonstration of the DKB working
on their MT3D Jupyter notebook (see D6.4 §2.4 [Magnoni et al. 2020b]). The goal was to
demonstrate improved abstraction and reduced repetition resulting in less detail and less
repetition - reducing distractions, workload and learning thresholds. This has been achieved by
creating in the DKB, instances of workflows with information about their source code, default
parameters,default inputs, etc. needed for their execution. This information can be updated
producing new identified versions. This is incorporated into an experimental version of the
DareManager helper functions for creating new users, new sessions, etc. Instances are
automatically updated with the right information when a workflow is registered. Any information
can be viewed via the get and find functions using the names users prefer that only need to be
unique and understood within a context. An important feature of the DKB is that it allows for all
the versions of an instance to be kept, which as we anticipated proved a significant benefit to
users. The result is illustrated in Figure 4.9.

Figure 4.9: Illustration of the simplification achieved by using the general-purpose DKB to manage
information for a user. The two fragments of Jupyter notebook are equivalent. With the DKB (left) the user
has significantly less work to do compared with the previous Jupyter notebook (right), but still has full control
of everything. This is a preliminary demonstrator that runs but is not yet complete.

4.3 The P4, tools and interaction interfaces
P4 includes the provenance functionality that enables the acquisition and exploitation of
provenance data. DARE focussed initially on capturing lineage information about the execution
of a method. This is described by the initial inputs, the method’s processing elements, and the

DARE-777413 Public D2.2

 Page | 63

computational resources used. We acquire provenance from different types of systems (CWL and
dispel4py). Although both build their provenance on top of W3C-PROV59, we mapped CWLProv
specialisations to S-PROV, in order to be interactively explored and visualised using DARE’s S-
ProvFlow tools and lineage API. The lineage information recorded from the execution of a
dispel4py workflow can be tuned adopting a provenance configuration and contextualisation
system developed during the first half of the DARE project [Spinuso et al. 2019]. For CWL, we
started by focussing on managing provenance information produced by CWL SPECFEM3D
workflows, implementing a mapping to S-PROV that we have incrementally adapted to support
CWLProv in a generic way. The provenance generated by such workflows, can now be sent to
the lineage services API and visualised in the S-ProvFlow viewer, as shown in Figure 4.10. These
have been implemented according to the requirements of the use cases defined in WP6/WP7
summarised in §3.1 and §3.2. Here, we are interpreting and summarising the CWLProv
information produced by such API calls in order for it to be integrated and accessible through S-
ProvFlow.

Ultimately, CWL and its provenance component aims at the generation of research-objects60.
Pursuing this model depends on the implementation and policy of the DKB in terms of the storage
and description of the results generated through DARE. We foresee provenance data to be linked
from DKB entities describing the final dataset. This will require the proper generation of the results’
PID and the reference to the endpoint that will extract from P4 (s-ProvFlow) the full lineage trace
associated with the data product. This would comply with the RDA indication for a pattern enabling
the linkage between metadata and provenance61.

59 W3C-PROV https://www.w3.org/TR/prov-overview/
60 Research Objects http://www.researchobject.org/
61 Associating metadata in documents with graph provenance https://patterns.promsns.org/pattern/12

https://www.w3.org/TR/prov-overview/
http://www.researchobject.org/
https://patterns.promsns.org/pattern/12

DARE-777413 Public D2.2

 Page | 64

Figure 4.10: Lineage of Cyclone Tracking CWL workflow shown in the S-ProvFlow viewer. Here the workflow
processes, their outputs and dependencies are described adopting the metadata vocabularies supported by CWL.

Once the lineage has been stored we provide three kinds of exploration functionalities. Live
monitoring, Lineage queries, Discovery and comprehensive visual Analytics. These have been
described in the DARE literature [Spinuso et al. 2019, Atkinson et al. 2019, Klampanos et al.
2019] from the point of view of their conceptual functionalities and integration within the platform.
More technical insights are provided within the DARE deliverable produced by WP3 [Spinuso et
al. 2020].

Latest developments addressed improvements to the lineage query methods. We provide a more
usable and powerful set of methods that will allow users to search over combinations of terms’
using value-ranges or value lists. These improvements will be reflected in the s-ProvFlow viewer
too. In Figure 4.11 we show the prototypical interface that allows users to search for workflow
executions with a short explanation of the new syntax.

DARE-777413 Public D2.2

 Page | 65

Figure 4.11: MVV Workflow Execution search panel. The panel allows users to compose the query
interactively by specifying more terms and expressions indicating lists or ranges of values. The list presents
the user’s runs that match the search parameters.

Recent developments have been largely dedicated to the integration of security mechanisms for
the authorised access and storage of the provenance data (AAI). This is pursued in a way that
meets the GDPR regulations in terms of the separation, “by design”, between the recorded
lineage traces and any deducible information about the users themselves (e.g., username, email,
identity). In this respect P4 relies on the DARE AAI (see §5.2) and the DKB (see §4.2) for the
complete resolution of users’ personal information. Implementation details will be reported in the
official deliverables about the platform deployment in WP5 [Roth et al. 2020] and the updated
lineage services in WP3 [Spinuso et al. 2020]. In Figure 4.12 we show an updated schema of the
services architecture

DARE-777413 Public D2.2

 Page | 66

Figure 4.12: S-ProvFlow integration in DARE. Actor A is the user starting the workflow. She delegates to dispel4py the
access to the lineage services. Actor B instead directly accesses the provenance information through the S-ProvFlow
viewer. The schema includes the new components managing the authentication of the calls by the different actors
(Keycloak and the two dedicated Keycloak gatekeepers). Updates from disple4py are sent to the S-Prov Queue. This
module extracts the credentials and performs authenticated insert into the S-Prov API on behalf of the workflow.

Aspects of P4 also concern direct interaction with the setup and incremental customisation of the
development environment, for instance based on Notebook services such as Jupyter. The KNMI
is working on a new API, SWIRRL62 (Software for Interactive and Reproducible Research Labs).
This work is conducted in the context of the ENVRIFair project in close collaboration with DARE.
The API automatically manages the deployment of a computational environment offering
integrated notebook, execution of workflows and visualisation services. The provenance
information describing the API actions for the creation and updates of the environment, the
execution of data-staging workflows and the generation of repdocuble snapshots are captured
within formal provenance documents. These are stored within a dedicated database and made
accessible through the SWIRRL API63. Ultimately, the provenance data will allow users to trace
the evolution of changes within the environment itself and to restore past setups. The latter action
may include data and notebook pages, according to a user’s needs, fostering reproducibility and
sharing of research progress among peers. Aiming DARE at being fully controllable through such
interactive notebooks, we foresee great potential for the integration of the services offered by the
two projects, with a particular focus over reproducibility and traceability of the research progress.
This will extend the period of support and amortise support over a much wider community, as
required for sustainability - see §5.

62 https://zenodo.org/record/4264852#.X6lvNdv_pSw
63 https://gitlab.com/KNMI-OSS/swirrl/swirrl-api

https://zenodo.org/record/4264852#.X6lvNdv_pSw
https://gitlab.com/KNMI-OSS/swirrl/swirrl-api

DARE-777413 Public D2.2

 Page | 67

4.4 Conclusions & Summary
As reported in §3 the DARE platform delivers significant new power to our user communities. It
now supports a wider spectrum of user communities and a wider range of applications used by
those communities. However, DARE does not have the resources to run these at scale as
frequently as users require. As the DARE-enabled methods are polished ready for productive use
and as courses are run to expand DARE’s user community, this becomes ever more pressing.
The DARE platform deployment has been made easily deployable on institutional, regional and
European eInfrastructures such as EOSC, and has had a comprehensive and flexible AAI system,
to accommodate local practices and those target deployment sites’ security requirements (see
§5.2). Consequently, users can exploit the full range of computational and data resources that
they are entitled to use. This sometimes requires enabling relatively inexperienced operational
teams to set up, run and help DARE users with a local instance of the DARE platform. The
mechanisms are explained in §5.2 and their extension to the wider ENVRIfair community is
reported in D3.7-8 [Spinuso & Klampanos 2020,Spinuso et al. 2018].

The three subsystems on which DARE depends are now well integrated, and are brought into a
consistent security framework by the login service. Their use is made straightforward through a
Python library of helper functions, which encourages research engineers to use them correctly
(see §3.4).

The WaaS (§4.1) has been significantly extended to accommodate CWL workflows, piloted by
both application communities. The optimisation of dispel4py workflows has been developed
[Liang et al. 2020]. Workflows grow in complexity by accretion, revision and composition. The
current workflows used by WP6 and WP7 have not yet developed that complexity, as they are at
the early stages of their life. Consequently, the benefits of that optimisation are not yet
demonstrable and synthetic workflows based on the WP6 were used during the research.

The DKB (§4.2) has three mature parts, the two workflow registries, the data catalogue (§4.2.4)
and the sophisticated P4 with its tools and visulaisations (§4.3). The integrating and context
providing aspect of the DKP (§4.2.1-§4.2.3) is a fully developed prototype with an early pilot study
being conducted with WP7. There has not been time to fully explore its potential.

The provenance system, P4 (§4.3), is fully operational and will continue to develop under the
aegis of ENVRIfair. It has been substantially extended with accommodation of CWL provenance
and more powerful query and visualisation systems.

There is also an ethical challenge to the collaborating federations that use the DARE platform.
The purpose of the platform is to help individuals, teams and wider federations pursue complex
research campaigns by pooling their ideas and efforts, i.e., we must support their collaboration
by facilitating cross-boundary communication and sharing. The DARE platform has a significant
Computer-Supported Collaborative Working (CSCW) role. But that depends on individuals
recognising each other in the system, acknowledging each other's contribution and respecting
each other's wishes. This cannot be done if identities are hidden. DARE has not investigated this

DARE-777413 Public D2.2

 Page | 68

issue, but as more dependence on provenance is developed in research communities, facilitated
by DARE’s powerful provenance-driven tools, we believe it will emerge as an issue in those
communities. A solution may build on institutional or public identity providers.

DARE-777413 Public D2.2

 Page | 69

5 Future, Sustainability and Evaluation
Sustainability is crucial for our partners using the DARE platform. They are developing new
methods and working practices that depend on the platform. They would suffer severe disruption
if the sophisticated software and integrated systems were not supported after the DARE project
concludes. There are three aspects to achieving such sustainability:

1. Minimising the cost and effort required by using shared systems, standard software and
careful engineering; but the cost can never be made vanishingly small - this is addressed
in §5.2.

2. Building the commitment to invest in the required maintenance by developing expertise
and advocates across the user communities - this is addressed in §5.1.

3. Amortising the costs widely by expanding the user communities and the number of
application areas, organisations and funders who contribute. This depends on and
contributes to an improved return on investment (RoI); a bootstrap challenge - see §5.1.

The drive for sustainability influences every aspect of DARE’s work. Sustainability has long been
understood as a pressing issue for software, e.g., quoting an ENVRI report accepted by DARE’s
two RI communities, EPOS and IS-ENES.

“Software sustainability: ... The decision to depend on software is as important as the
decision to depend on an instrument and it should be taken equally carefully. This will lead
to an identified list of mission-critical software. Each RI ... should establish mechanisms
for determining that critical list. The list should be minimised by careful use of commercial
and well-supported open-source software. The members of the residual list of software
must be maintained or replaced throughout each RI’s lifetime. This requires appropriate
resources, particularly software engineering staff and processes with appropriate quality
controls. Wherever possible these should be met through alliances.” (From Section 5.2
“Impact on Stakeholders” p193 [Atkinson et al. 2016])

One source of underfunding for sustaining critical research software is the lack of realisation of
the costs involved, as most people do not have experience of software going into production and
being used by multiple users, for many purposes, some not originally envisaged, running in many
different and changing computational contexts. The support needed is software maintenance and
provision of help to installers and users. Maintenance includes: bug fixes (~10%), accommodation
of computational context changes (~50%) and enhancements (~40%).

The lack of research-software sustainability, led to the establishment of the Software
Sustainability Institute (SSI)64. Its mission is to change the culture so that the Research Software
Engineers (RSEs) making and sustaining well-engineered software are respected and resourced.
SSI now delivers global leadership for this cause.

64 Software Sustainability Institute (SSI) https://www.software.ac.uk/

https://www.software.ac.uk/

DARE-777413 Public D2.2

 Page | 70

Taking these viewpoints into account, we identify the critical sustainability steps. We combine the
viewpoint of RIs and their user communities with the viewpoint of research developers and
platform engineering teams.

Research Infrastructures65, represented by WP6 and WP7 in DARE, need to:

1. Establish an agreed process by which they decide on which software they will depend on.
This has to balance two factors:

a. Research agility enabling them to explore new ideas which may depend on and
develop new software, and

b. Dependability from using established software and limiting new software to that
which they know they or others can maintain.

 This requires continuous governance and operational procedures. Allowing experiments
 and exploration, but filtering which are carried through to production with the

concomitant obligation for long-term support.
2. Develop a mutual-respect ethos when interacting with RSEs, expecting professionalism

to develop in software and systems engineering as it does in their own discipline.
3. Share the responsibility of finding resources in the short, medium and longer term.
4. Actively develop broad adoption of the software they choose to depend on.

The builders of the DARE platform and the research developers pioneering new uses take on the
following responsibilities as they proceed:

1. Minimise the use of bespoke software so as to reduce the sustainability burden.
a. This requires re-engineering once requirements and solutions are understood to

eliminate the effects of agile processes delivering quick solutions.
b. This requires broadening the functionality of key elements to avoid additional

elements, to take over from bespoke software and to extend amortisation.
2. Use existing well-maintained software whenever possible, and build any new software

with well-disciplined professionalism, e.g., meeting the standards for research software
established by the Software Sustainability Institute.

3. Deliver self-sufficiency through intellectual ramps; users start by using your provided
solutions with their anticipated variations, but can, with modest effort move to more radical
variations when they need to.

4. Reduce to a minimum while still meeting all existing and anticipated requirements, the
elements in a platform, subsystem or software stack that are included in its sustainability
phase, by selecting elements widely used elsewhere, avoiding duplication and weeding
out those whose maintenance outweighs their benefits.

5. Document with guidelines, patterns, technical information and tutorials the minimum from
step 4 for each role that will be involved in use or maintenance.

These considerations should guide all eInfrastructure, platform and generic tool builders, not just
those building the DARE platform.

65 Both EPOS and IS-ENES, in conjunction with their related global and long-running campaigns,
recognise the importance of software for their research and have relevant resources.

DARE-777413 Public D2.2

 Page | 71

Evaluation has been limited by the effects of the covid-19 pandemic, as it has not been possible
to build up user-communities of significant size and then observe their behaviour and collect their
views and insights. However, the rather smaller sample than we would have liked have delivered
preliminary information. That is reported and analysed in §5.3. It provides preliminary evidence
that users will find the DARE platform easy to use, a substantial step in delivering the power of
eInfrastructure to their research and a significant aid to innovation in their research,

5.1 User communities and sustainability
DARE seeks to address needs concerning, the European domain specific e-Infrastructures (such
as EPOS, IS-ENES2, ICOS65, SKA66, etc.), science and technology professionals and the “long
tail of science”, including research institutes, research teams, individual researchers, citizen
scientists and SMEs, without them needing to be concerned with technicalities, enabling them to
focus on how to improve their methods, results, synergies and innovation potential and develop
data-driven services. A crucial element of DARE’s sustainability is increasing DARE users’ self-
sufficiency by reducing technical hurdles and delivering substantial documentation and training
kits.

To ensure sustainability, partners will identify exploitable DARE assets, developing a software
portfolio, and assuring portability and maintainability under permissive open-source licenses or
suitable copyright policies. They will provide user support on a best effort basis, fixing bugs and
implementing features and notifying users about revisions. This will create user and developer
communities that will invest and innovate using DARE tools.

Extending beyond the IS-ENES and EPOS ESFRIs, DARE initiated talks with additional
communities seeking to develop new use-cases pertaining to Eurofusion, Nanomaterials,
Atmospheric sciences, Earth Observation etc. DARE also investigated technical integration with
EINFRA-21 projects and EOSC. DARE attempted to raise awareness via frequent social media
presence, its web site, newsletters and events while it explored the opportunity to publish in Open
Research Europe.

Finally, appropriate measures and a supportive environment on all levels must be sustained to
foster the effective uptake of new technologies by all relevant economic stakeholders and to
facilitate the DARE platform and DARE components as services being adopted by the industry.
The aforementioned courses of action are detailed and highlighted in the deliverable “D8.6
Sustainability, Exploitation and Commercialization Plan” [Tsilimparis et al. 2020].

5.2 Individual and Combined services

Deployment and operations effort can often present an obstacle for the adoption of new platforms
like the DARE toolkit. Therefore, care has been taken to design and implement the components
of the DARE toolkit from the start in a way that eases the burden on IT-administrators, and that
self-empowers non-expert users to run and manage a DARE deployment without the help of IT-
operations experts. Using microservices facilitates the deployment of a subset of the DARE

DARE-777413 Public D2.2

 Page | 72

platform, when a community chooses to use only parts of it. In these cases and for the complete
platform, virtualisation on multiple levels assists with deployment.

The components, as presented in the preceding sections, are designed as loosely coupled,
concise services. Communication / Interworking is realised through APIs, mostly based on REST
interfaces using JSON encoding, allowing for distribution and horizontal scaling of the services
(e.g. through the automatic functionalities of Kubernetes66). DARE is undogmatic when it comes
to the microservices philosophy, though. Where it was required to directly address user needs,
for example, deviations from this approach were made. For example, to support some simulation
codes that use the Message Passing Interface (MPI), more tightly coupled interdependencies are
required, e.g. a shared POSIX filesystem between the Kubernetes pods that takes part in a
computational job. However, care has been taken to address these cases with native Kubernetes
functionality, e.g. in this case with a Kubernetes Operator.

To avoid duplication of effort and sustainability challenges after the project’s end, well established
open source components have been used wherever possible. Where multiple implementations
were available, well-known and widely used community-supported solutions have been preferred.
Such components include MySQL, nginx, Virtuoso, Keycloak and Kubernetes.

APIs of the DARE components are designed to be as simple as possible, preferably as REST
APIs using JSON for communication. API documentation is available in the form of
OpenAPI/Swagger descriptions. Where available, (pseudo-)standards have been used, such as
W3C-PROV, DCAT67 and CWL.

As has been described before, the DARE components make use of operating-system level
virtualisation. They are distributed as Containers, and their deployment is managed using the
Kubernetes Container Orchestration system. Where possible, existing community-maintained
container images are used to avoid replication of work. For custom containers, care has been
taken to follow best-practices such as relying on community-maintained base images, carrying
only necessary software in small containers running only single applications, using APIs between
different applications instead of interweaving, etc, which reduces the effort for maintenance and
operations. For deployment, Kubernetes descriptors have been prepared that allow selective as
well as collective deployment of the DARE components.

The above described containers and descriptors allow easy deployment on existing container
infrastructures, such as managed Kubernetes Clouds (e.g. Google Kubernetes Engine). On top
of that, the DARE project provides tools to ease the deployment on IaaS-Clouds such as Amazon
and the EOSC-provided IaaS Clouds (e.g. EGI FedCloud). By using the Terraform68 tool, DARE
can provide Infrastructure-as-code level configuration files that allow automation of deployment
on various Cloud technologies, both managed and on-premise, e.g., locally installed OpenStack
Clouds. For this approach, DARE relies on the work of the Kubernetes project Kubespray69 to
automate the deployment of Kubernetes on Cloud infrastructures and then deploying the DARE
components on top.

Most of the DARE components can be used separately as well as in combination as a part of its
design philosophy. The components should be as independent as possible, but allow for strong

66 Kubernetes https://kubernetes.io/
67 https://www.w3.org/TR/vocab-dcat-2/
68 https://www.terraform.io/
69 https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

https://kubernetes.io/
https://www.w3.org/TR/vocab-dcat-2/
https://www.terraform.io/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

DARE-777413 Public D2.2

 Page | 73

synergy effects when used in combination. For example, the provenance system can be run
independently from the rest of DARE as an autonomous system. However, there are many
advantages when it is used with other components. As described in §4, when used with dispel4py
or CWL, for example, a lot of provenance information is collected and recorded automatically.
Another such case is the Search & Discovery service, which can but does not need to make use
of the information collected from the Provenance service. In this way, DARE encourages further
use of its components to improve long-term sustainability.

5.2.1 Authentication and Authorisation

Including support for Authentication and Authorisation in the DARE platform is a particular
challenge due to the dual objectives described above, as they result in partly contradicting
requirements. To give just one example: while on the one hand, local deployments (on-premise)
should be independent of external services and separate components should be usable without
too many dependencies, typical requirements of community-driven hosted services go in the
opposite direction. Users would like to be able to use their existing accounts to log-in and want to
benefit from Single-Sign-On solutions instead of entering their credentials multiple times. For this
purpose, community-driven infrastructures like the ESFRIs often employ or are on their way to
implementing the strategy depicted in the AARC Blueprint Architecture70. Examples include
DARIAH71, EPOS72, LifeWatch73 and many others. This is also the model that the EOSC-portal74
is currently using and the proposal for the EOSC AAI from the EOSC-Hub75,76 project.

To strike a balance, WP5 has evaluated multiple standards (OpenID Connect77, SAML278) and
available implementations (among them Keycloak, Unity IDM, Perun, Shibboleth) and has finally
decided to implement a solution based on the Keycloak Open Source Identity and Access
Management solution79. Keycloak is a widely supported Open Source solution with backing from
Red Hat, as it forms the upstream project of their commercial Red Hat Single Sign-On solution. It
allows Identity Brokering, acting as an AAI Proxy, Single-Sign On, as well as local user databases.
With SAML, OAuth2.080 and OpenID Connect, it supports the most important Standards, allowing
easy integration and wide compatibility with standards-compliant software and infrastructures
(such as EOSC). Additionally, client adapters for multiple programming languages and application
servers are available to facilitate integration. For the use with microservices in particular, an
authenticating (reverse) proxy called Gatekeeper is available, that can be used to outsource the
protocol implementation from the application to this ---proxy. Due to its popularity, a curated helm
chart for Kubernetes is available and upgraded regularly on which DARE can easily rely.

On this foundation, DARE uses the OpenID Connect/OAuth 2.0 Standard with access tokens.
Even though this meets the requirements nicely, and OpenID Connect has become a widely used
standard, there are still challenges to be solved when using it in a scenario such as DARE. These

70 https://aarc-project.eu/architecture
71 https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation
72 https://aarc-project.eu/aarc-in-action/epos/
73 https://wiki.geant.org/display/AARC/LifeWatch+-+Pilot+Overview
74 https://eosc-portal.eu/
75 https://www.eosc-hub.eu/
76 https://confluence.egi.eu/display/EOSC/Authentication+and+Authorization+Infrastructure+-+AAI
77 https://openid.net/developers/specs/
78 https://tools.ietf.org/html/rfc7522
79 https://www.keycloak.org/
80 https://tools.ietf.org/html/rfc6749

https://aarc-project.eu/architecture
https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation
https://aarc-project.eu/aarc-in-action/epos/
https://wiki.geant.org/display/AARC/LifeWatch+-+Pilot+Overview
https://eosc-portal.eu/
https://www.eosc-hub.eu/
https://confluence.egi.eu/display/EOSC/Authentication+and+Authorization+Infrastructure+-+AAI
https://openid.net/developers/specs/
https://tools.ietf.org/html/rfc7522
https://www.keycloak.org/
https://tools.ietf.org/html/rfc6749

DARE-777413 Public D2.2

 Page | 74

include for example, pure API access (OAuth2.0 is browser-focused) and secure delegation for
long-running batch jobs (OAuth 2.0 Token Exchange was still in development, and in draft status
until January 202081). The DARE API now uses Keycloak’s preview feature of Token Exchange
with Offline Tokens to support delegation to the APIs. For increased security, the tokens can be
scoped. Keycloak also allows administrators of a DARE instance to either rely on external
identities, e.g. social user ids, or to fall back to purely local user accounts, which is helpful for
private deployments of DARE.

5.3 Assessment of utility and usability
This section presents the evaluation of the DARE platform from the usability and utility
perspectives. The evaluation was conducted in two stages:

1. A questionnaire with international students from KIT's BSc and MSc programmes in
Geophysics who had used the volcanic mass transport simulation method (see §5.3.1)

2. Interviews with N research engineers and application-domain experts.

5.3.1 Evaluation with students using the volcanic pilot
This section is also in Deliverables D6.4 (§3.1.2). We advise readers who have already read it to
skip to §5.3.2.

Study Design

At this stage we aimed to: 1. investigate the usability of the platform; 2. collect suggestions for
improving the platform

Participants. The participants in this study were 10 BSc and MSc (in Geophysics) students from
the KIT (Karlsruhe Institute of Technology).

Methods. We used a questionnaire to capture the users’ perception of usability (mainly user
satisfaction) and also suggestions for improving the platform regarding both usability and
functionality. The questionnaire included the System Usability Scale (SUS) which consists of 10
five-point Likert scale questions [Sauro 2011]. The rest of the questions were open ended and
aimed to find out what the participants like, dislike and what suggestions they have for improving
the system.

Procedure. The study got ethical approval (No 34039) from the School of Informatics, University
of Edinburgh. It took place at the KIT (Karlsruhe Institute of Technology) and followed up a session
of student training which included using a free exploration of the DARE platform. The course's
main aim was to train students in volcanic hazard assessment. At the end of the course all the
students agreed to answer the questionnaire, after reading the information sheet and signed the
consent form.

Data Collection and Analysis. The data from the SUS questionnaire were used to obtain the SUS
score. This was calculated by combining the ten scores for each question according to [Bangor
et al. 2009]. This score ranges from 0 to 100, with a score of 68 being considered as an average
score. In order to be excellent, a system should score over 80.3. Data analysis of the answers in

81 https://tools.ietf.org/html/rfc8693

https://tools.ietf.org/html/rfc8693

DARE-777413 Public D2.2

 Page | 75

the open-ended questions was inspired by thematic analysis, top-down approach [Brown & Clarke
2006]. We set up three predefined themes: likes, dislikes and suggestions.

Results and Discussion
After analysing the data, we excluded the data from one participant as we found that their scores
in the SUS questionnaire were in contradiction with their answers in the open-ended questions.
Particularly, the student was very positive in appreciating the platform, but scored the platform
extremely low (i.e. 15). Therefore, we only considered the results from nine participants to this
study.

Figure 5.1: [left] SUS Scores; [right] DARE platform overall score

SUS scores on usability. The SUS scores for the nine participants ranged between 50 and 82.5
(see Figure 5.1 left) with an average of 65. Looking at Figure 5.1 right, we can see that the
maximum score is very close to excellent on the adjective scale [Bangor et al. 2009], whereas the
minimum is still OK. The average SUS score falls within the upper band of OK and is very close
to what is considered the average score which puts the project at 50th percent.

Likes. Most of the students (N=5) considered the platform as easy to use. Other aspects that they
liked were: no need for coding82 (N=1), access from any device (N=1), remote access (N=1) and
good structure (N=1).

Challenges. Four students commented that the system crashes too often, when too many cells
run at the same time or when too many people were using it simultaneously. Several students
(N=4) complained that they needed to wait a bit too long to ‘get it going”. Also, several students
(N=4) considered the platform as being complex. Two students found the structure challenging.
Also, one student remarked that some of the results look weird and one commented that the
system does not provide feedback for the user's progress83.

Suggestions. Several suggestions were directed toward improving the usability of the system and
they referred to: time indication, status indication (whether a certain workflow run has finished)

82 As they were new to DARE and in a one-day class preparing for field work, the exercise had to be
completed in limited time so the set up did not require them to code; however, this is not typical of DARE
use by domain experts and research engineers.
83 Similarly, professional and experienced users would use DARE’s provenance-powered tools for this.

DARE-777413 Public D2.2

 Page | 76

and increasing transparency (–“Some code blocks can be overseen because they are hidden”).
Two students suggested the users would need more tutorials.

Conclusions

The overall outcome indicates a reasonably high-level of usability from the view point of new
users. The challenges and suggestions identify opportunities for improvement that should be
attempted if resources permit. However, these should be interpreted taking account of what the
students were shown, for example, there are interactive methods and tools and access to files
and logs via the provenance-powered tools developed by WP3, but they were not introduced in
the training. Further detail and analysis may be found in [Constantin 2020].

5.3.2 Evaluation interviewing research engineers

Aims
The interview-study aims were to evaluate:

1. ease of use
2. user satisfaction
3. utility of the DARE platform
4. DARE impact on the speed of the engineers' responses to research requirements
5. impact of the platform on researchers’ productivity
6. impact of the platform on the innovation in research community

In addition, the study aimed to collect:

1. usability and functionality issues
2. suggestions to improve the platform

The evaluation interviews aimed to assess the usability of the DARE platform covered both use
cases. The analysis therefore provides an overall feedback which applies to seismological and
climate-science applications. As a result, this section is also in Deliverables D6.4 (§3.2.2.2) and
D7.4 (§3.3). We advise readers who have already read it to skip to §5.4.

Participants
We have recruited 6 participants, from various backgrounds. Two of them helped us to pilot the
interview questions. All of them have been involved in the development of the platform to varying
extents, and they all have programming skills.

Procedure
We conducted semi-structured interviews to obtain insights arising from participants’ perspectives
and experiences. The interview questions were developed to probe several areas of exploration,
such as the ease of use of the DARE platform, its learnability, its potential for integration with
other services, and for automation of research methods. They asked about data-use policies.

Initially, we piloted the interviews with two DARE team members. This tested our interview
questions and interview data-collection procedure.

DARE-777413 Public D2.2

 Page | 77

Data Collection and Analysis
The data has been collected online, using the Zoom platform for video-conferencing. The
sessions were recorded for analysis purposes. Similar to the previous evaluation (§5.3.1), a
thematic analysis top-down approach was employed. Codes were given to the participants (from
P1 to P6) to maintain anonymity in reports and publications.

Results and Discussion
Here is a summary of main findings of the interviews, clustered thematically. Readers are referred
to [Andries & Constantin, 2020] for a complete report.

Successful experience: overall, all the participants found that the experience of using DARE led
to success. Discussing what contributed to their success, they mentioned that developing targets
for use cases was accomplished (N=2)84, and the structure of the platform in itself was deemed
to be versatile and functional, because it “hides some of the complexity of the execution” (P3). Its
components have also been mentioned as contributing to a successful experience with the
platform, primarily the workflows that are already set up (N=4), or the fact that DARE sets up the
environment with all the libraries that the user may need (P6).

Ease of use: the participants generally found the platform easy to use (N=5). We employ caution
when presenting this result as all interviewees were in some way involved in its development.
They were able to identify potential areas for improvement, and suggestions for additional
features and training to improve the use of the platform.

Less successful platform features: the participants discussed these in terms of features that
might be missing and could be added, referring to the lack of maturity of the platform, rather than
unsuccessful features. Examples included the lack of a user interface, for finding files and logs
(P4). Instead they had to use the DARE API for that purpose (P4). The difficulty of installation
(P5), the potential assumption that the users should have some cloud computing knowledge to
use the platform (P6), as well as computational and programming skills (P3). There was confusion
around the provenance and the API documentation regarding types of data (P2).

Training needed for using the platform: all the participants agreed that training would be
beneficial for the users and developers. More specifically, an initial training stage was described
as essential as the platform has plenty of functionality to offer, and the opportunity and support to
explore that in depth should be provided (N=2). Perhaps some training, more specifically aimed
at individuals who may not have a background in computer science (N=2), to provide support with
the development of workflows and helper functions would be useful. Providing examples which
can be sorted by functions, objectives, etc. was also mentioned (P5)). Videos to explain how to
register an application, and videos to introduce each aspect of the platform’s functionality (P6).

Responsibility for knowledge transfer: all the participants agree that the developers have the
initial responsibility for providing support (e.g. to organise webinars). A collaboration between

84 Indicates number of interviewees that gave this response, 2 in this case.

DARE-777413 Public D2.2

 Page | 78

research engineers and domain-specific engineers was also mentioned (N=2). Lastly, one of the
participants suggested a community forum could be developed over time, similar to Stack
Overflow, provided that enough members would actively engage.

Productivity and innovation in communities: all the participants agreed that by using the
platform, the productivity of the users would increase. This was motivated by explaining that the
platform is aimed at reducing the engineering time by hiding the technical details (N=3), allowing
the users to spend more time developing their specific applications and, consequently, on
research. More specifically, the platform can be used via an API call, not needing to worry about
the workflows or the infrastructure (N=2). Most of the participants (N=5) considered that, by
reducing the time previously spent on infrastructure complexities, the platform did accelerate
innovation in the users’ communities, by enabling them to focus more on research.

Integration with external and local services: all the participants considered that the platform
integrated very well with both external and local services, given the services that were tested so
far. Examples of good integration included the European seismic archives which could be
downloaded for use (P3). DARE was described as modular and independent thanks to
Kubernetes (P4) and well connected to the climate computational resources infrastructure (P5).
DARE was also described as one of the first platforms to allow the communities to transfer into a
cloud, which should be the future of operations (P6).

Automation of research methods and development practices: the participants knew that
automation was one of the goals of DARE (to hide some technical details) and they all believe
that this was achieved to some extent. More specifically, all resources are shareable between
users, by enabling the use and sharing of workflow systems, and large-scale parallelisation
without the users’ input.

Additional automation and functionality can be added to the platform, depending on
community’s needs (N=2), e.g., graphical interfaces could help beginners (P2), the addition of a
desktop version with the same libraries, for local deployment (P6), as well as a visual
representation of the user’s repository (P6) may be helpful.

Summary and caveat
We would have recruited more responders and conducted more interviews had face-to-face
events been possible. The participants supported the view that the platform is usable, and that it
would be easy to use (depending on the users’ background and skills). The platform supports
automation of some common practices, and it allows additional functionality to be added. Training
should be provided by developers in the early stages and extended by the communities
themselves, to facilitate understanding of the different opportunities enabled by the platform.
Some of the replies indicate limitations in the training, e.g., regarding difficulty in finding files and
logs when the data catalogue (§4.2.4) and provenance tools (§4.3) provide these facilities.
However, readers are warned that all the interviewees were or had been members of the DARE
project, so these results should be treated with caution. Those who had developed a part of the
system were unaware of tools and functions that would be familiar to application experts or

DARE-777413 Public D2.2

 Page | 79

research engineers. The study at KIT (§5.3.1) offered significant value as it was with entirely new
users with no prior engagement with DARE. A key target in each research community to stimulate
induction, so that the active community achieves a critical mass.

5.4 Summary and Conclusions
Sustainability is a crucial issue for DARE, its current and future users and for others who develop
sophisticated research environments needed to meet pressing local and global challenges. The
mid-term review reinforced its importance. We started §5 by clarifying this sustainability
requirement and identifying the critical issues that needed to be addressed.

One of these, the need to deliver sufficient benefits to justify the cost of sustainability, has been
demonstrated by the two pilot communities: solid-Earth scientists (§3.1) and climate scientists
(§3.2). Their ability to respond rapidly to new issues and to exploit new data and new
computational power depends on equipping the research engineers with tools that help them
innovate easily (§3.3) and diagnose the causes of technical issues (§4.3).

Sustainability depends on keeping the support-costs sufficiently small (support includes: software
and system maintenance, transfers to new technologies, community support and enhancements).
The systematic use of standard and widely used subsystems in the platform is key to this (§5.2).
This reduces the amount of software the DARE community has to take sole responsibility for.
That residual “upper middle-ware and tuned tools” that future DARE communities have to support
remains essential for the new ways of working made possible by DARE.

That cost has to be amortised over sufficiently large communities that recognise the platform's
utility. Two aspects contribute to this. The outreach and events build those communities and
convince them of DARE’s value - a key sustainability step (§5.1). The ability to deploy widely and
to fit in with existing communities is also crucial. The arrangements for deployment and
coexistence with other services (§5.2) and particularly the flexibility but strength of AAI and
security (§5.2.1) are key to this. A noteworthy step in this direction is the use of P4 in ENVRIplus
(§4.3).

Usability, measured in terms of ease of use, user satisfaction and learnability. Critically, the ability
to incrementally learn how to exploit the new power delivered to researchers and their engineers,
enables the use to grow and warrants the investment needed to sustain the platform. The limited
evaluation that has been possible (§5.3) suggests that this may be achieved for DARE’s targeted
application-domain experts and research engineers. Further work is needed to broaden the
usability evaluation to less experienced and less computer literate members of the research
communities. The two initial communities were chosen because they had such expertise as it
allowed DARE to focus on the key challenge of delivering agility and power to research engineers.

DARE-777413 Public D2.2

 Page | 80

6 Summary, Vision and Impact
The power and usability of the DARE platform and its supported applications is demonstrably
significant (§3). It yields substantial improvements in productivity for application-domain experts
from improved abstraction. It delivers agility, faster responses to new requirements and
opportunities, by delivering accelerated rates of innovation by research engineers from the
combination of powerful tools and adaptive mappings to target platforms. This is fully reported by
the application communities in D6.4 [Magnoni et al. 2020b] and D7.4 [Pagé 2020].

Substantial progress has been made in the final year greatly enhancing many critical factors that
combine to deliver the substantial advances in usability, power, sustainability and flexibility. A few
are highlighted here.

1. Integration via the DARE manager and the provision of helper functions improving usability
(§3.3).

2. Introduction of a flexible and powerful AAI framework via the login manager (§5.2.1)
enabling DARE to fit into a wide variety of security regimes using a variety of e-
Infrastructure provisions.

3. Automation of container deployment, configuration and orchestration exploiting
Kubernetes, reducing complexity while delivering power to research engineers (§5.2).

4. Incorporation of the W3C CWL scientific workflows, widening the communities that will
find it easy to migrate to the DARE platform (§4.1).

5. Extension of the provenance-driven tools to deliver more sophisticated user controls and
bundled actions to the selected entities (§4.3).

6. The systematic support for Jupyter notebooks, which are in widespread use throughout
DARE’s target communities (§4.3).

These more than meet the objectives for the final year set out in §6 of ID2.2 [Atkinson et al. 2020].

During the same period, exploration of new technologies and pilot implementations have prepared
the way for further advances.

1. The dynamic optimisation of fine-grained data-intensive workflows encoded in dispel4py
delivers very substantial performance improvements, responsiveness to data-dependent
computational costs and scalability potential (§4.1) [Liang et al. 2020].

2. The support for user or community controlled contexts in the DARE knowledge base that
will help communities manage complexity and allow rapid innovation and experiments to
coexist with stable and protected information on which a domain’s professionalism
depends (§4.2.5).

These will ensure that the DARE platform is ready to accommodate the challenge of the three
extremes as its user communities grow and their research develops.

Sustainability is absolutely critical for that potential to be realised and for the investment by
DARE’s user and developer communities to pay off. Essential steps have been taken, particularly
with respect to software and system engineering, deployability, and versatility (§5.2). A key issue
is self-sufficiency. An experiment using the volcanology mass-transport simulation as a test case
(§3.1.2) provided good evidence of the potential, but revealed some aspects of developing a new

DARE-777413 Public D2.2

 Page | 81

use where help from system, software or data experts was still needed. There will always be
residual issues where help is needed, but these should be minimised. Further steps in usability
(see above), documentation and recorded training have addressed many of the limits to self-
sufficiency.

The DARE platform is a powerful composition of a growing number of microservices (§5.2). The
developing research engineer and application expert DARE usage patterns are growing and have
increasingly ambitious targets and sophisticated methods, as we intended at the outset of the
project. Research leaders have to develop plans, find resources and steer their communities to
build on the DARE platform and approach. This needs to harness broad alliances. We see
potential for these through EPOS, IS-ENES and IPCC, ENVRI-FAIR and EOSC, with concrete
steps having already taken place towards some of them, in line with the DARE Sustainability
Strategy & Roadmap, internal document, 30/1/2020. DARE already has momentum in each of
the large collaborative endeavours, while at the same time it is readily usable in local and
institutional installations using their system support and resources.

DARE has pioneered a new approach to supporting demanding collaborative research which will
sustain many communities as they combine forces to address today’s most pressing data-
intensive and computationally demanding challenges.

Acknowledgements
The DARE project is a Horizon2020 project, 777413, funded by the European Union. It builds on
a succession of prior EU projects, including: ADMIRE, VERCE, ENVRI, ENVRIplus, and on
nationally funded projects. It depends on the coordination of e-Infrastructures by EOSC. The
authors thank the research software engineers and systems teams that have delivered and tested
a succession of releases of the platform, and the research developers and application-domain
scientists who have worked with them to shape and demonstrate the power of DARE’s approach
and products.

Bibliography

[Aki & Richards 1980] K. Aki & P. G. Richards, Quantitative Seismology, Theory and Methods. Volume I and II, 1980.

[Anselemi & Gaujai 2009] Anselmi, J., Gaujal, B.: Performance evaluation of work stealing for streaming applications.
In: Abdelzher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 18–32.Springer, 2009.

[Atkinson et al. 2020] Malcolm Atkinson, Rosa Filgueira, André Gemünd, Vangelis Karkaletsis, Iraklis Klampanos,
Antonis Koukourikos, Amélie Levray, Mike Lindner, Federica Magnoni, Christian Pagé, Andreas Rietbrock, Alessandro
Spinuso, Chrysoula Themeli, Xenofon Tsilimparis and Fabian Wolf, DARE Architecture and Technology internal report,
ID2.2, March 2020 DOI 10.5281/zenodo.3697898 URL https://doi.org/10.5281/zenodo.3697898

[Atkinson et al. 2020a] Malcolm Atkinson, Amélie Levray and Rui Zhao, DKB Design, in preparation, 2020. URL
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit?usp=sharing

https://doi.org/10.5281/zenodo.3697898
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit?usp=sharing

DARE-777413 Public D2.2

 Page | 82

[Atkinson et al. 2019] M.P. Atkinson, R. Filueira, I. KLampanos, A. Kourkourikos, A. Krause, F. Magnoni, C. Pagé, A.
Rietbrock and A. Spinuso, Comprehensible control for researchers and developers facing data challenges, proc. IEEE
eScience conf. 2019.

[Atkinson et al. 2018] M.P. Atkinson, E. Casaroti, Ewering, R. Filgueira, A. Gemünd, I. Klampanos, A. Koukourikos, A.
Krause, F. Magnoni, Pagani, C. Pagé, A. Rietbrock, A. Spinuso and C. Wood, DARE Architecture & Technical
Positioning, Deliverable D2.1 DARE project. URL https://zenodo.org/record/2613550#.Xe-l5r_grUb

[Atkinson et al. 2016] M.P. Atkinson, Alex Hardisty, Rosa Filgueira, Cristina Alexandru, Alex Vermulen, Keith Jeffery,
Thomas Loubrieu, Leonardo Candela, Barbara Mangagna, Paul Martin, Yin Chen, Margareta Helström, A consistent
characterisation of existing and planned RIs. Deliverable 5.1 of the ENVRIplus project URL http://www.envriplus.eu/wp-
content/uploads/2016/06/A-consistent-characterisation-of-RIs.pdf

[Atkinson & Filgueira 2020] Planning dispel4py developments, in preparation, 2020. URL
https://drive.google.com/open?id=1N6UGU8J47FHpnWaLTNpRLCAFguGIQYmanmO4pyB8ixM

[Bangor et al. 2009] Bangor, A., Kortum, P., & Miller, J.. Determining what individual SUS scores mean: Adding an
adjective rating scale. Journal of usability studies, 4(3): 114-123, 2009.

[Bell et al. 2013] Bell, Ray & Strachan, Jane & Vidale, P.L. & Hodges, Kevin & Roberts, Malcolm. (2013). Response of
Tropical Cyclones to Idealized Climate Change Experiments in a Global High-Resolution Coupled General Circulation
Model. Journal of Climate. 26. 10.1175/JCLI-D-12-00749.1.

[Braun & Clarke] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in
psychology, 3(2): 77-101.

[Casarotti et al. 2019] Casarotti E., Magnoni F., Pagé C., Filgueira R., Klampanos I., D8.4 Training and Consulting
Report I, DARE D8.4, July 2019.

[Constantin 2020] Aurora Constantin, Report on the first usability evaluation of DARE platform (24th July 2020), DARE
technical report, https://doi.org/10.5281/zenodo.430971

[Andries & Constantin 2020] Valentina Andries and Aurora Constantin, Evaluating user experience with the DARE
platform, DARE technical report, 2020, URL

[Corcho 2019] Oscar Corcho, Management of versions of ontologies. Personal communication, 2019

[Doltz et al. 2018] Dolz M.F., Del Rio Astorga, D., Fernández J., Garcia, J.D. and Carretero, J., Towards automatic
Parallelization of stream processing applications, IEEE Access, Vol. 6, pp 39944-39961, 2018. DOI
10.1109/ACCESS.2018.2855064. URL https://doi.org/10.1109/ACCESS.2018.2855064.

[DXWG 2020] W3C Data Exchange Working Group, Data Catalog Vocabulary (DCAT) - Version 2 W3C
Recommendation 04 February 2020, URL https://www.w3.org/TR/vocab-dcat-2/

[Edwards 2013] Edwards, P.N., A Vast Machine: computer models, climate data and the politics of global warming, MIT
press, 2013.

[Filgueira et al. 2017] Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos and Alexander Moreno,
dispel4py: A Python framework for data-intensive scientific computing, The International Journal of High Performance
Computing Applications 2017, Vol. 31(4) 316–334. DOI: 10.1177/1094342016649766. URL
https://journals.sagepub.com/doi/pdf/10.1177/1094342016649766

https://zenodo.org/record/2613550#.Xe-l5r_grUb
http://www.envriplus.eu/wp-content/uploads/2016/06/A-consistent-characterisation-of-RIs.pdf
http://www.envriplus.eu/wp-content/uploads/2016/06/A-consistent-characterisation-of-RIs.pdf
https://drive.google.com/open?id=1N6UGU8J47FHpnWaLTNpRLCAFguGIQYmanmO4pyB8ixM
https://doi.org/10.5281/zenodo.430971
https://doi.org/10.1109/ACCESS.2018.2855064
https://www.w3.org/TR/vocab-dcat-2/
https://journals.sagepub.com/doi/pdf/10.1177/1094342016649766

DARE-777413 Public D2.2

 Page | 83

[Filgueira et al, 2016] R. Filgueira, R. Ferreira da Silva, A. Krause, E. Deelman, and M. Atkinson, Asterism: Pegasus
and dispel4py hybrid workflows for data-intensive science, in 7th International Workshop on Data-Intensive Computing
in the Clouds (DataCloud’16), 2016, p. 1–8.

[Folch et al. 2009] A. Folch, A. Costa, & G. Macedonio 2009. FALL3D: A computational model for
transport and deposition of volcanic ash, Computers & Geosciences, 35.6: 1334-1342.

[Frigo et al. 1998] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’98,
pages 212–223, ACM 1998

[Garijo et al. 2019] Daniel Garijo, Maximiliano Osorio, Deborah Khider, Varun Ratnakar and Yolanda Gil, OKG-Soft: An
Open Knowledge Graph for Describing, Composing and Reusing Software, IEEE eScience Conf., 2019

[Klampanos et al. 2020] Iraklis Angelos Klampanos, Chrysoula Themeli, Alessandro Spinuso, Rosa Filgueira, Malcolm
Atkinson, André Gemünd and Vangelis Karkaletsis, DARE Platform: a Developer-Friendly and Self-Optimising
Workflows-as-a-Service Framework for e-Science on the Cloud, Journal of Open Science Software, 5(54), 2664.
https://doi.org/10.21105/joss.02664 2020

[Klampanos et al. 2019] Iraklis Angelos Klampanos, Athanasios Davvetas, André Gemünd, Malcolm Atkinson, Antonis
Koukourikos, Rosa Filgueira, Amrey Krause, Alessandro Spinuso, Angelos Charalambidis, Federica Magnoni,
Emanuelé Casarotti, Christian Pagé, Mike Lindner and Vangelis Karkaletsis, DARE: A Reflective Platform Designed to
Enable Agile Data-Driven Research on the Cloud, in BC2DC workshop proc. IEEE eScience conf., 578-585, 2019. DOI
10.1109/eScience.2019.00079

[Klampanos et al. 2015] Klampanos, Iraklis Angelos, Martin, Paul, & Atkinson, Malcolm. Consistency and Collaboration
for Fine-Grained Scientific Workflow Development: The dispel4py Information Registry. Zenodo.
http://doi.org/10.5281/zenodo.3361395.

[Lannon et al. 2020] Larry Lannom, Dimitris Koureas, and Alex R. Hardisty, FAIR Data and Services in Biodiversity
Science and Geoscience. Data Intelligence 2 (2020), 122–130. doi: 10.1162/dint_a_00034

[Levray 2020] Amélie Levray, DARE Knowledge Base User Manual, DARE technical report. 2020. URL
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit?usp=sharing

[Liang et al. 2020] Liang Liang, Filgueira Rosa and Yan Yan, Adaptive Optimizations for Stream-based Workflows, in
proceedings WORKS 2020, Oct. 2020.

[Magnoni et al. 2020a] Magnoni F., Grund M., Spinuso A. and Rietbrock A., D6.2 Requirements and Test Cases II,
DARE D6.2, July 2020.

[Magnoni et al. 2020b] Magnoni F., Lindner M., Gottschämmer E., Rohnacher A., Constantin A., Andries V., D6.4 Pilot
Tools and Services, Execution and Evaluation Report II, DARE D6.4, December 2020.

[Magnoni et al. 2020c] Magnoni F., Pagé C., Gottschämmer E., Lindner M., Tsilimpari X., Galifianaki E., Constantin A.,
Andries V., D8.5 Training and Consulting Report II, DARE D8.5, December 2020.

[Magnoni et al. 2019a] Magnoni F., Casarotti E., Artale P., Lindner M., Rietbrock A., Klampanos I., Davvetas A., Spinuso
A., Filgueira R., Krause A., Atkinson M., Gemund A., Karkaletsis V., DARE to Perform Seismological Workflows, IN13C-
0726, American Geophysical Union, Fall Meeting 2019.

[Magnoni et al. 2019b] Magnoni F., Casarotti E., Davvetas A., Klampanos I., D6.3 Pilot Tools and Services, Execution
and Evaluation Report I, DARE D6.3, July 2019.

https://doi.org/10.21105/joss.02664
http://doi.org/10.5281/zenodo.3361395
https://docs.google.com/document/d/1u62251KnRURztDyBbxo77yfGGBpjxjzlWBlSinArxX0/edit?usp=sharing

DARE-777413 Public D2.2

 Page | 84

[Martin et al. 2019] Paul Martin, Laurent Remy, Maria Theodoridou, Keith Jeffery, and Zhiming Zhao, Mapping
heterogeneous research infrastructure metadata into a unified catalogue for use in a generic virtual research
environment. Future Generation Computer System, 101, 1–13. http://doi.org/10.1016/j.future.2019.05.076

[Mattheis et al. 2012] Sebastian Mattheis, Tobias Schuele, Andreas Raabe, Thomas Henties and Urs Gleim, Work
Stealing Strategies for Parallel Stream Processing in Soft Real-Time Systems, in proc. Architecture of Computing
Systems -- ARCS 2012, 172-183, Springer 2012

[Myers et al. 2015] James Myers, Margaret Hedstrom, Dharma Akmon, Sandy Payette, Beth A Plale, Inna Kouper,
Scott McCaulay, Robert McDonald, Isuru Suriarachchi, Aravindh Varadharaju, Praveen Kumar, Mostafa Elag, Jong
Lee, Rob Kooper and Luigi Marini, Towards sustainable curation and preservation: The SEAD project’s data services
approach, in: e-Science, IEEE pp. 485-494, 2015.

[Navarro et al. 2009] Navarro, A., Asenjo, R., Tabik, S., Cascaval, C. Analytical modeling of pipeline parallelism. In:
International Conference on Parallel Architectures and Compilation Techniques (PACT).IEEE (2009)

[Pagé 2020} Christian Pagé, D7.4 Pilot Tools and Services, Execution and Evaluation Report II, DARE deliverable 7.4,
Dec. 2020 URL https://docs.google.com/document/d/1bzcwKCaI-i9u3XDScH6873kXPD9EHPOCM0G__-LQ6JE/edit#

[Pagé 2019] Christian Pagé, D7.3 Pilot Tools and Services, Execution and Evaluation Report I, DARE deliverable 7.3,
July 2019. URL https://docs.google.com/document/d/1Y9Ap10SM5RvyL3a91HksYl17pED-
c0mpz0mantGbInE/edit?usp=sharing

[Pagé et al. 2019a] Pagé, Christian; Plieger, Maarten; Som De Cerff, Wim; De Vreede, Ernst; Drost, Niels; Klampanos,
Iraklis Angelos; Karkaletsis, Vangelis; Atkinson, Malcolm and Pivan, Xavier. Climate Data Access: Re-thinking our Data
Analysis Workflows, poster, in Proc. Scientific Gateways Conference (2019), DOI: 10.17605/OSF.IO/T8Y3H URL:
https://zenodo.org/record/3546232#.Xfeh4S2ZOUk

[Pagé et al. 2019b] Pagé, Christian; Som de Cerff, Wim; Plieger, Maarten; Spinuso, Alessandro; Pivan, Xavier, Enabling
Transparent Access to Heterogeneous Architectures for IS-ENES climate4impact using the DARE Platform, in Proc.
IEEE eScience Conf. (2019) DOI: 10.17605/OSF.IO/WKM93, URL: https://zenodo.org/record/3546219#.XfelrS2ZOUk

[Python IDEs 2019] The Python IDEs, The Python Language Reference URL https://docs.python.org/3/reference/

[Ramakrishnan 2018] V. Ramakrishnan, Gene Machine, Oneworld Publications, 2018.

[Rietbrock et al. 2018] Andreas Rietbrock, Federica Magnoni and Emanuele Casorotti, Alessandro Spinuso and André
Gemünd, D6.1 Requirements and Test Cases I, DARE D6.1, July 2018. URL
https://drive.google.com/open?id=1ZISbDjphDR7gYNiQ24TQOM-npKxx169A.

[Rodriuez & Buyya 2018] Maria A. Rodriguez and Rajkumar Buyya, Scheduling dynamic workloads in multi-tenant
scientific workflow as a service platforms, Future Generation Computer Systems, 79, 2018, 739-750

[Roth et al, 2020] Malin Roth, Horst Schwichtenberg and André Gemünd (eds), Platform Infrastructure, Usage &
Deployment II, DARE deliverable D5.2, December 2020.

[Rule, Adam, et al. 2018] "Ten simple rules for reproducible research in Jupyter notebooks." arXiv preprint
arXiv:1810.08055 (2018).

[Sauro 2011] Sauro, J. A practical guide to the system usability scale. Denver: Create Space, 2011.

https://docs.google.com/document/d/1bzcwKCaI-i9u3XDScH6873kXPD9EHPOCM0G__-LQ6JE/edit
https://docs.google.com/document/d/1Y9Ap10SM5RvyL3a91HksYl17pED-c0mpz0mantGbInE/edit?usp=sharing
https://docs.google.com/document/d/1Y9Ap10SM5RvyL3a91HksYl17pED-c0mpz0mantGbInE/edit?usp=sharing
https://zenodo.org/record/3546232#.Xfeh4S2ZOUk
https://zenodo.org/record/3546219#.XfelrS2ZOUk
https://docs.python.org/3/reference/
https://drive.google.com/open?id=1ZISbDjphDR7gYNiQ24TQOM-npKxx169A

DARE-777413 Public D2.2

 Page | 85

[Spinuso et al. 2020] Alessandro Spinuso, Chrysoula Themely, Iraklis Klampanos, D3.8 Integrated Monitoring and
Management Tools II. DARE deliverable D3.8, December 2020 URL https://docs.google.com/document/d/1vRy0R-
E2waESqTd7FIkY1N4yzu4m05d4x71UNJFrAcs/edit?usp=sharing

[Spinuso & Klampanos 2018] Alessandro Spinuso and Iraklis Klampanos, D3.7 Integrated Monitoring and Management
Tools I, DARE Deliverable D3.7 2018, http://project-dare.eu/wp-content/uploads/2019/03/D3.7-Integrated-Monitoring-
and-Management-Tools-I_final_draft.pdf

[Spinuso et al. 2019] Alessandro Spinuso, Malcolm Atkinson and Federica Magnoni, Active provenance for Data-
Intensive workflows: engaging users and developers, Proceedings of the BC2DC workshop IEEE eScience conf. 2019.
URL https://bc2dc.github.io/presentations/ActiveProvenanceASpinuso.pdf Replace with DOI

[Spinuso & Klampanos 2018] Alessandro Spinuson and Iraklis Klampanos, Integrated Monitoring and Management
Tools, D3.7 DARE project deliverable URL
https://drive.google.com/open?id=1QRDAQOoyPX13Uue_L3c_WnLNhapQlD3z

[Trani 2019] Trani L. A methodology to sustain common information spaces for research collaborations, PhD thesis,
University of Edinburgh, 2019.

[Trani et al. 2018] L. Trani, R. Paciello, M. Sbarra, D. Ulbricht and the EPOS IT Team, Representing Core Concepts
for solid-Earth sciences with DCAT – the EPOS-DCAT Application Profile, Geophysical Research Abstracts 2018.

[Trani et al. 2018] Trani L., Atkinson M.P., D. Bailo, R. Paciello, Filgueira, R., Establishing core concepts for information-
powered collaborations, Future Generation Computer Systems 89, 421–437, 2018.

[Trani et al. 2018] Trani, L., Paciello, R., Bailo, D., and Vinciarelli, V. (2018). EPOS-DCAT-AP: a DCAT Application
Profile for solid-Earth sciences. In 2018 Fall Meeting AGU. Abstract IN31B-33.

[Tsilimparis et al. 2020] Xenofon Tsilimparis, …, D8.6 XXXX, DARE deliverable D8.6, December 2020.

https://docs.google.com/document/d/1vRy0R-E2waESqTd7FIkY1N4yzu4m05d4x71UNJFrAcs/edit?usp=sharing
https://docs.google.com/document/d/1vRy0R-E2waESqTd7FIkY1N4yzu4m05d4x71UNJFrAcs/edit?usp=sharing
http://project-dare.eu/wp-content/uploads/2019/03/D3.7-Integrated-Monitoring-and-Management-Tools-I_final_draft.pdf
http://project-dare.eu/wp-content/uploads/2019/03/D3.7-Integrated-Monitoring-and-Management-Tools-I_final_draft.pdf
https://bc2dc.github.io/presentations/ActiveProvenanceASpinuso.pdf
https://drive.google.com/open?id=1QRDAQOoyPX13Uue_L3c_WnLNhapQlD3z

DARE-777413 Public D2.2

 Page | 86

Appendix 1 Abbreviations and Definitions
Table A1.1: Abbreviations used in this document

Abbreviation Meaning

§ Section or paragraph

AAI Authentication Authorisation and Identity

API Application Programming Interface. the means by which software and developers use
the capabilities a software subsystem or services offers

C3S Copernicus Climate Change Service a service run by Copernicus

C4I Climate for Impact a service run by IS-ENES

CMIP Coupled Model Intercomparison Project (IPCC, 2018: Annex II: Acronyms)

CSCW Computer-Supported Collaborative Working

CWL Common Workflow Language a W3C standard https://www.commonwl.org/

DEM Digital Elevation Models (topography information)

DCAT Data Catalogue, a W3C standard describing the content of data catalogues

DKB DARE Knowledge Base an open-ended place to leave and access information

DXWG Data eXchange Working Group a W3C group developing a vocabulary to describe
data, DCAT

ECMWF European Centre for Medium-Range Weather Forecasts

EPOS European Plate Observing System

ERA5 Data provided by ECMWF which contains hourly estimates of a large number of
atmospheric, land and oceanic climate variables

ETOPO1 ETOPO1 is a 1 arc-minute global relief model of Earth's surface that integrates land
topography and ocean bathymetry.

FALL3D Ashfall 3D simulation code (original Fortran code)

FALL3DPy Ashfall 3D simulation code (python port of the original Fortran code written in context
of a Master`s Thesis at GPI-KIT)

FDSN Federation of Digital Seismometer Networks that deploy seismometers on a long-term
basis to collect and make available their wave-form observation time series

IS-ENES InfraStructure for the European Network for Earth System Modelling

KB Knowledge Base an organised repository of information used by people and software

https://www.commonwl.org/

DARE-777413 Public D2.2

 Page | 87

LOD Linked Open Data used to represent the semantic web

MIP

MPI Message Passing Interface used in HPC systems for parallelisation

MS Mile Stone that marks project or research campaign progress

MT3D Moment Tensor in 3D, a seismological method

NetCFD Network Common Data Form https://www.unidata.ucar.edu/software/netcdf/

NOAA National Oceanic and Atmospheric Administration

P4 Protected Pervasive Persistent Provenance a means of recording what has been done

PE Processing Element, a computational process or processes forming part of a data-
streaming workflow

RaaS Reproducability-as-a-Service the collection and use of provenance to facilitate
repeating a computational experiment or analysis

RA Rapid Assessment a seismological method estimating ground motion

RDF Resource Description Framework (RDF) a W3C standard for the semantic web

Registry The dispel4py Information Registry that manages information about dispel4py
workflows and their component PEs

RI Research Infrastructure computational, storage and networking facilities to support
research or domain specific facilities to support research

RoI Return on Investment the value obtained compared with the effort or cost needed

RSE Research Software Engineer a designation of competence awarded by SSI

SSI Software Sustainability Institute https://www.software.ac.uk/

SWIRRL Software for Interactive and Reproducible Research Labs (ENVRIfair project)

UTC Coordinated Universal Time https://en.wikipedia.org/wiki/Coordinated_Universal_Time

VC Volcanology Test Case

WaaS Workflows-as-a-Service an automated support for authoring and using formalised
methods

WMS Workflow Management System that supports developing and running workflows

WPS Web Processing Service an OGC developed standard for geospatial data

URI Universal Resource Indicator a W3C standard

URL Universal Resource Locator a W3C RDF-related standard

URM User Reference Manual

https://www.software.ac.uk/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

DARE-777413 Public D2.2

 Page | 88

	Executive Summary
	1. Introduction
	2. Architecture overview
	3. User requirements and experience
	3.1 Use by EPOS communities
	3.1.1 Use by Seismologists
	3.1.2 Use by Volcanologists

	3.2 Use by climate-impact modellers
	3.3 Use for development
	3.4 Summary and conclusions

	4. Architecture Implementation
	4.1 Workflows as a Service (WaaS)
	4.1.1 Concepts
	4.1.2 User Instructions
	4.1.3 Workflow Execution
	4.1.4 Future Work - Optimisations

	4.2 The DARE Knowledge Base (DKB)
	4.2.1 DKB requirements
	4.2.2 DKB roles
	4.2.3 DKB contents, structure and functions
	Instance specifications
	Persistent Identifiers (PIDs)
	Context specifications
	Conceptual library specifications

	4.2.4 DKB contemporaries
	Data Catalogue
	Registry
	Relationship with P4

	4.2.5 DKB Status and Potential
	General-purpose DKB implementation
	DKB demonstration

	4.3 The P4, tools and interaction interfaces
	4.4 Conclusions & Summary

	5 Future, Sustainability and Evaluation
	5.1 User communities and sustainability
	5.2 Individual and Combined services
	5.2.1 Authentication and Authorisation

	5.3 Assessment of utility and usability
	5.3.1 Evaluation with students using the volcanic pilot
	5.3.2 Evaluation interviewing research engineers
	Aims
	Participants
	Procedure
	Data Collection and Analysis
	Results and Discussion
	Summary and caveat

	5.4 Summary and Conclusions

	6 Summary, Vision and Impact
	Acknowledgements
	Bibliography
	Appendix 1 Abbreviations and Definitions

