
DARE-777413 Public D3.4

 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

 D3.4 Data Lineage Services II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D3.4 Data Lineage Services II

Work package WP3: Large-scale Lineage and Process Management

Tasks involved T3.2, T3.3

Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Alessandro Spinuso

Contributor(s)

Reviewer(s) Horst Schwichtenberg (SCAI)

Document description Overview of the third intermediate release of the Lineage Services.

DARE-777413 Public D3.4

 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

1 12/03/2020 Outline and inclusion of
Lineage API

Alessandro Spinuso

1 25/09/2020 Refinement of outline
and update content

Alessandro Spinuso

1 23/09/2020 Conclusions and Future
Work

Alessandro Spinuso

1 15/12/2020 Applied Revision
Comments

Alessandro Spinuso

Executive Summary

DARE-777413 Public D3.4

 Page | 3

This document describes the work conducted for the last release of the DARE lineage service API. In
Section 2 we address the improvements of its architecture and deployment, which includes new
components to accommodate the AAI (Authentication Authorisation Infrastructure) of the DARE
platform and resiliency queues. Section 4 instead illustrates the new search functionalities, followed by
the preliminary support for the acquisition of lineage produced by CWL workflows (Section 5). Finally
the API has been equipped with a new test framework, which is integrated within the CI/CD pipeline of
the S-ProvFlow system (Section 6).

Table of Contents

Executive Summary 2

DARE-777413 Public D3.4

 Page | 4

1 Introduction 4

2 Updated Architecture 5

2.1 Messages Queues 5

2.2 AAI 5

3 Improved search functionalities 6

4 Import of CWLProv 7

5 Testing 7

5.1 Scoped unit tests 7

5.2 API Endpoint tests 8

6 Conclusions and Future Work 8

Annex I S-ProvFlow lineage API 9

List of Terms and Abbreviations

Abbreviation Definition
PROV W3C Standard for Provenance Representation
S-PROV PROV extension for lineage representation of

streaming operators.
CWLProv Provenance Information produced by CWL

Workflows
CI/CD Continuous Integration/Deployment
AAI Authentication Authorisation Infrastructure
CWL Common Workflow Language

1 Introduction
We present the updates of the S-ProvFlow Lineage services. These have been conducted to achieve a
full integration with the DARE platform, especially concerning the identification and authentication of
the user and its resiliency to temporary downtime that might occur to its persistence components. The
developments also improved the usability of the API, thanks to the enhanced metadata search
capabilities, and its overall quality, which is now provided with CI/CD pipelines and a testing framework.

DARE-777413 Public D3.4

 Page | 5

The experimental adoption of CWL for the implementation of new use cases triggered the investigation
of extending the API with capabilities for the acquisition of lineage expressed in CWLProv. This produced
a preliminary implementation, which also triggered considerations on the coverage and usability
challenges associated with the support of this format.

2 Updated Architecture
The S-ProvFlow system1 integrated in DARE combines a set of components that support acquisition and
exploration of lineage and provenance data produced by the workflows. It includes a database, a web
service layer and two complementary interactive tools. The whole system is delivered as a composition
of different Docker containers following a microservices deployment approach in DARE. Beyond the
modularity and decoupling, which is typical of microservices architectures, this choice facilitates ways
to make it accessible to research-developers and administrators who want to explore and investigate
issues, or keep the system updated. In Figure 1 we show how the microservices-based deployment is
currently setup within the DARE platform.

2.1 Messages Queues
Message and fail-over queues (S-ProvFlow Queue) have been implemented to detach the workflow
execution from the direct access to the provenance database services. This has the advantage of
delegating to the queue those mechanisms that can recover from a temporary unavailability of the
provenance API (S-ProvFlow API), preventing message loss. Moreover, this architecture concentrates
in the queue the overhead of authenticating and storing the provenance messages into the database,
with less impact on the workflow’s execution, especially on managing the authentication and failovers.

2.2 AAI
Authentication is integrated via the adoption of delegation tokens (OAuth2). These are sent from the
workflow to the queue, which thereby uses them to authenticate to the API via a dedicated Keycloak
Gate-keeper. Users are identified anonymously and uniquely by using a combination of the account
identifier (sub) and the identifier for the identity provider who issued (iss) the credentials. This approach
also supports with the GDPR regulations in terms of privacy and anonymity of information associated
with the users and their activities across systems. The interactive monitoring tools also make use of
authentication mechanisms. We will describe this in more detail in D-3.8.

1 https://gitlab.com/project-dare/s-ProvFlow/-/tree/1.2.7

https://gitlab.com/project-dare/s-ProvFlow/-/tree/1.2.7

DARE-777413 Public D3.4

 Page | 6

Figure 1: S-ProvFlow integration in DARE. Actor A is the workflow developer interacting with dispel4py, while Actor B
accesses the provenance information through the S-ProvFlow viewer. The diagram highlights the communication flows
within the Kubernetes cluster, as well as those established from the External Networks, such as the Internet/Intranet.

3 Improved search functionalities
The API allows to perform search for workflow executions and data elements adopting metadata which
have been defined by the developer or chosen from standard vocabularies. The updated version
accepts now a simple syntax that allows users to formulate queries over multiple terms’ single values,
ranges or lists, thereby enabling more intuitive and expressive queries than in the past. In the table
we report some examples.

Description Values Expression

Comma separated values to express a list
Example: search by lists of stations’ names
(seis:station).

AQU,CERA,CAFR

Three dots to express a range
Example: search by sampling rate’s value within
a certain range (seis:sampling_rate)

25..30

Single Values
Example: search by a single channel code
(seis:channel)

HXZ

DARE-777413 Public D3.4

 Page | 7

The same combination of terms and values can be used in more API methods (5) (10) (11). Below we
show the example of an API call that queries the conjunction of the expression in the table.

/workflowexecutions?usernames=<userid>&terms=seis:stations,seis:sampling_ra
te,seis:channel&expressions=AQU%2CERA%2CAFR,25..30,HXZ&mode=OR&start=0&limi
t=1000

4 Import of CWLProv
Furthermore, DARE is progressing with the adoption of CWL for the implementation of those use cases
which benefit from a task oriented workflow. This is done incrementally with the refinement of the
requirements advanced by WP6 and WP7. Consequently, in order to benefit from the S-ProvFlow
system’s archiving, advanced metadata queries and tooling, the lineage API has been extended to
support the import of provenance information produced by CWL, which is expressed in CWLProv. This
is required to map the CWLProv generated by the CWL workflows to S-PROV.

Given the complexity of the CWLProv representation2, we have initially addressed the provenance
output produced by known use cases (eg. WP6 Rapid Assessment and WP7 Cyclone Tracker), aiming
eventually at a general solution. More scenarios can be supported, however this will require additional
refinements to the acquisition module3, to make sure the expectations of these and further use cases
are met. This will also trigger improvements to the interactive capabilities of the S-ProvFlow system.

5 Testing
The newly developed sets of tests automatically run via the CI/CD pipeline, which is triggered from
within gitlab (can be configured to deploy to a target cluster) or manually. These can be divided in two
different types of tests, as follows.

5.1 Scoped unit tests

The CI/CD pipeline support, defined in s-ProvFlow4 executes the unit tests one by one. Thanks to the
coverage5 tool all tests are executed automatically. The pipeline is currently configured to run when
committing to development branches. This behaviour can be changed to address different testing
deployment requirements. In Figure 2 we provide a summary of the current coverage for this type of
test.

○ Test for CWLProv mapping

2 CWLProv produced by the execution of a Specfem3d Workflow https://openprovenance.org/store/documents/1977
3 https://gitlab.com/project-dare/s-ProvFlow/-/blob/master/provenance-api/src/prov-services/cwlprov_2_sprov.py
4 https://gitlab.com/project-dare/s-ProvFlow/-/tree/master/provenance-api/src/test
5 http://nedbatchelder.com/code/coverage

https://openprovenance.org/store/documents/1977
https://gitlab.com/project-dare/s-ProvFlow/-/blob/master/provenance-api/src/prov-services/cwlprov_2_sprov.py
https://gitlab.com/project-dare/s-ProvFlow/-/tree/master/provenance-api/src/test
http://nedbatchelder.com/code/coverage

DARE-777413 Public D3.4

 Page | 8

○ Unit tests for extended query expressions
○ Unit tests asserting database queries

Figure 2: Report of the unit tests coverage for the API code.

5.2 API Endpoint tests

These sort of tests run on a local deployment of the API and can be executed manually one by one (e.g.
by running the test_helper.py) or through the coverage toolkit. They simulate calls to the API as
they would be sent by the S-ProvFlow viewer and assert on status code and on the response object
(returned to the viewer).

6 Conclusions and Future Work

The integration of the lineage services within DARE presented new challenges in respect to the usability,
reliability and quality of the whole s-ProvFlow system. Tackling each of these aspects required to re-
evaluate design choices, which lead eventually to the updated architecture presented in Section 2.
Especially with the implementation of the authentication infrastructure that secures the access to each
of the DARE components, we had to rollout solutions to mitigate the impact on the overhead, especially
affecting the scientific applications that produce and upload lineage data at runtime. For this reason,
our new approach allows the DARE workflows to delegate the authenticated inserts of their lineage
traces to the queue. The latter also acts as a resilient messenger, since it can recover in the occurrence
of a temporary unavailability of the API.

Improvements to the usability involved the discovery methods of the API, which are now allowing
different combinations of metadata query expressions, from lists to value-ranges. This also fostered a
better design of the user interface that now exposes these features to end-users. Further work could
extend the search capabilities, for instance, enabling free text searches on the metadata values. Such
search should be performed across all properties, to assist users in those circumstances where they can
not recall the metadata associated with the values of interest.

DARE-777413 Public D3.4

 Page | 9

The underlying model (S-PROV6) effectively covered the lineage requirements of DARE. Being the model
based on PROV we could import provenance generated by CWL applying a coherent mapping. However,
we foresee further extensions. These should address additional metadata linkage across the other
registries of the platforms, for instance addressing the source containers and workflow descriptions.
These relationships should be automatically established by the platform’s API, upon the execution of
the workflows. Also, implementing solutions to enrich the metadata recorded by CWLProv, would allow
users to gain more benefits from CWL traces, by exploiting the functionalities offered by the lineage
services.

Another type of information that could be represented as provenance data consists in asynchronous
interaction of the users with the platform, especially when these generate changes to their
environment. We have explored these aspects in the framework of other H2020 projects (ENVRIFair,
IS-ENES3), parallel to DARE. Here, we develop the SWIRRL API7, an infrastructure service offering
combined and customisable computational environments, such as Notebooks and Visualisation tools.
Thanks to the provenance recordings, the system enables different reproducibility actions, such as the
restore of an environment to a previous state, or the production of shareable snapshots containing
software and data (or means to access it). We believe that the integration of such provenance driven
technologies within DARE, would give users further control over the reproducible and trustworthy
dissemination of their research.

Annex I S-ProvFlow lineage API

 Provenance acquisition

6 S-PROV - http://purl.org/s-prov-v1-dev
7 SWIRRL Reproducible Research Labs on the Cloud https://gitlab.com/KNMI-OSS/swirrl/swirrl-api

http://purl.org/s-prov-v1-dev
https://gitlab.com/KNMI-OSS/swirrl/swirrl-api

DARE-777413 Public D3.4

 Page | 10

(1) workflowexecutions/insert Bulk insert of bundle or lineage documents in
JSON format

(2) workflowexecutions/<id>/edit Update of the description of a workflow execution.
Users can improve this information in free text.

(3) workflowexecutions/<id>/delete Delete a workflow execution trace, including its
bundle and all its lineage documents.

(4) workflowexecutions/import Import lineage traces from other workflow systems
and maps them to S-PROV allowing their exploration
through the S-ProvFlow tools. The current
implementation supports the import of traces in
CWLProv.

 Table1 : S-ProvFlow API Methods Provenance acquisition

 Monitoring, validation and lineage queries

(5) workflowexecutions(/<id> | ?<query string>) Provides a list of workflow runs performed by
one or more users. Runs can be searched by
specifying the parameters values used in the
workflow and by the metadata associated with
the data and the data-formats. Mode of the
search can also be indicated (mode ::= (OR |
AND). Boolean operators are applied metadata
and parameters’ values within each run.

(6) workflowexecutions/<id>/showactivity?<query-
string>

Extract detailed information of the processes
executed in each run. It shows progress,
anomalies (such as exceptions or systems’ and
users messages), count of the data produced
and whether it is available for download. This
method can also be used for runtime
monitoring.

(7) instances/<id>
(8) invocations/<id>
(9) components/<id>

Extract details about the invocation of an
instance of a workflow process.

(10) data(/<id> | ?<query string>) Extract metadata associated with a Data item
and its members, the DataGranules. The data is
selected by specifying the id or a query-string.
Query parameters allow searching by

DARE-777413 Public D3.4

 Page | 11

attribution (to a workflow or one of its
processes/functions) or by specifying
metadata expressions indicating single values,
ranges, lists, and data formats. Mode of the
search can also be indicated (mode ::= (OR |
AND)).

(11) data/filterByAncestor?<query string>

Filter a list of data ids based on the existence of
at least one ancestor in their data dependency
graph, according to a list of metadata terms
and by specifying expressions indicating single
values, ranges or lists, and data formats.
Maximum depth level and mode of the search
can also be indicated.

(12) data/<id>/derivedData
(13) data/<id>/wasDerivedFrom

Starting from a specific data entity of the data
dependency is possible to navigate through the
derived data (11) or backwards across the
element’s data dependencies (12). The number
of traversal steps is provided as a parameter
(level).

(14) terms?<query string>

Return a list of discoverable metadata terms
based on their appearance in a collection of
runIds and usernames, passed as parameters,
or for the whole provenance archive. Terms are
returned indicating their type (when
consistently used), min and max values and
their number of occurrences within the scope
of the search.

Table 2: S-ProvFlow API Methods Monitoring, validation and lineage queries

 Comprehensive Summaries

(15)
summaries/workflowexecutions/<id>?<query
string>

Returns an overview of the distribution of the
computation within a single run. It reports the size
of data movements between the workflow
components, their instances or invocations
depending on the specified granularity level.

DARE-777413 Public D3.4

 Page | 12

(16) summaries/collaborative?<query string>

Extract information about the reuse and exchange
of data between workflow executions based on
terms’ values- ranges and a group of users. The
API method allows for inclusive or exclusive (mode
::= (OR | AND) queries on the terms’ values.

Table 3: S-ProvFlow API Methods Comprehensive Summaries. These methods are used to produce
visual analytics within the BDV (Bulk Dependencies Visualiser) of the s-ProvFlow. They allow clients to

cluster the returning data by specifying a particular property in the groupBy parameter.

	Executive Summary
	​1​ Introduction
	​2​ Updated Architecture
	​2.1​ Messages Queues
	​2.2​ AAI

	​3​ Improved search functionalities
	​4​ Import of CWLProv
	​5​ Testing
	​5.1​ Scoped unit tests
	​5.2​ API Endpoint tests

	​6​ Conclusions and Future Work
	​Annex I S-ProvFlow lineage API

