
DARE-777413 Public D3.6

 Page | 1

H2020-EINFRA-2017

EINFRA-21-2017 - Platform-driven e-infrastructure innovation
DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

 D3.6 DARE API II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D3.6 DARE API II

Work package WP3: Large-scale Lineage and Process Management

Tasks involved T3.3, T3.4
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Sissy Themeli (NCSRD), Iraklis Klampanos (NCSRD)

Contributor(s) Sissy Themeli (NCSRD), Iraklis Klampanos (NCSRD), Alessandro
Spinuso (KNMI), André Gemünd (Fraunhofer)

Reviewer(s) Alessandro Spinuso (KNMI)

Document description Implementation of the DARE software API.

DARE-777413 Public D3.6

 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

1 09/09/2020 Initial version Sissy Themeli (NCSRD)
2 4/12/2020 Major updates throughout Iraklis Klampanos (NCSRD)
3 11/12/2020 DARE Login André Gemünd (Fraunhofer)
4 12/12/2020 Internal review Alessandro Spinuso (KNMI)
5 22/12/2020 Final version Iraklis Klampanos (NCSRD)

DARE-777413 Public D3.6

 Page | 3

Executive Summary
This deliverable is an incremental update of D3.5 and it reports the final state of the DARE platform’s
API. The DARE platform follows a “microservices” architectural approach, with multiple decoupled
components exposing and communicating via RESTful APIs. In the following sections we provide a
description of the current and final status of the overall DARE API, providing links to online
documentation as appropriate.

DARE-777413 Public D3.6

 Page | 4

Table of Contents

Executive Summary 3

1 Introduction 5

1.1 Approach and Relationship with other Work Packages and Deliverables 5

1.2 Methodology and Structure of the Deliverable 5

2 DARE API 5

2.1 Dispel4py Information Registry 5

2.2 DARE Login 19

2.3 CWL Workflow Registry 20

2.4 Execution API 29

2.5 Provenance API 32

2.6 Semantic-data API 37

2.7 Playground module 38

3 dispel4py and CWL-specific interfaces 40

3.1 Provenance Controls in dispel4py 40

4 Conclusions 41

5 References 41

List of Terms and Abbreviations

Abbreviation Definition
REST Representational State Transfer

API Application Program Interface

EPOS European Plate Observing System

ESGF Earth System Grid Federation

IS-ENES Infrastructure for the European Network for Earth System

EOSC European Open Science Cloud

DARE-777413 Public D3.6

 Page | 5

1 Introduction
This deliverable reports the current version of the DARE platform’s API. The DARE platform [1] follows
the Microservices Architecture and consists of multiple individual components. Each component
exposes its functionality via a RESTful API. In the following sections a thorough description of the DARE
API is provided. The most recent documentation of the DARE platform’s API is provided online as part
of the DARE platform’s dedicated website: https://project-dare.gitlab.io/dare-platform/api/

1.1 Approach and Relationship with other Work Packages and Deliverables

In accordance with the Architecture principles of D2.2 (which builds on D2.1 and ID2.2 [2]), the DARE
API represents a modular set of APIs with the intention to move towards a common knowledge-base
via federating over existing as well as new catalogues and registries. The DARE API consists of APIs to
work with registries of workflows and processing elements as well as to interact with the WaaS, the
shared file system, the provenance system, etc. The DARE API provided by this deliverable is the main
interface of the DARE platform with the outside world, therefore also providing functionality to WP6
and WP7. It is being affected by work in WP2, as well as in WP3 and in WP4.

1.2 Methodology and Structure of the Deliverable

This Deliverable describes the individual RESTful APIs that consist of the DARE API. The components
included are: the Dispel4py Information Registry, the Provenance API, the DARE Execution API, the CWL
Workflow Registry and the Authentication API.

2 DARE API
The complete and latest version of the API documentation as well as deployment / installation
instructions can be found in the DARE platform dedicated “microsite”, as the gitlab source code
repository, at: https://project-dare.gitlab.io/dare-platform/.

2.1 Dispel4py Information Registry
The main concepts of the dispel4py library are managed via the Dispel4py Information Registry [4],
which is a RESTful Web Service implemented in Python Django. This component enables the efficient
storage and retrieval of implemented Processing Elements (PEs), thus promoting workflow reusability.
Users can create their own workspaces and register the Processing Elements (PEs) that they intend to
execute or share. The Registry provides an API that enables creating, updating and deleting workspaces
and PEs. Before a workflow can be executed, it needs to be registered in the Registry. In Table 1, a
description of the Dispel4py Registry API is provided. The design approach and the main elements of
the dispel4py registry are provided in [4].

https://project-dare.gitlab.io/dare-platform/api/
https://project-dare.gitlab.io/dare-platform/

DARE-777413 Public D3.6

 Page | 6

HTTP
method

Name/Endpoint Description Content type Parameters

GET /connections/ Retrieves all the available
PE Connection resources. A
PE Connection resource
allows the addition and
manipulation of PE
connections. Connections
are associated
with PEs and are not
themselves workspace
items

application/json No parameters

POST /connections/ Creates a new PE
Connection resource,
which allows the addition
and manipulation of PE
connections. Connections
are associated
with PEs and are not
themselves workspace
items

application/json data (body)
example:
{
 "comment" :
"string" ,
 "kind" : "string"
,
 "modifiers" :
"string" ,
 "name" :
"string" ,
 "is_array" : true
,
 "s_type" :
"string" ,
 "d_type" :
"string" ,
 "pesig" :
"string"
}

GET /connections/{id}/ Retrieves a specific PE
Connection resource. A PE
Connection resource
allows the addition and
manipulation of PE
connections. Connections
are associated
with PEs and are not
themselves workspace

application/json id (integer)

DARE-777413 Public D3.6

 Page | 7

items.

PUT /connections/{id}/ Updates an existing PE
Connection resource. A PE
Connection resource
allows the addition and
manipulation of PE
connections. Connections
are associated
with PEs and are not
themselves workspace
items.

application/json -id (integer)
-data (body)
example:
{
 "comment" :
"string" ,
 "kind" : "string"
,
 "modifiers" :
"string" ,
 "name" :
"string" ,
 "is_array" : true
,
 "s_type" :
"string" ,
 "d_type" :
"string" ,
 "pesig" :
"string"
}

DELETE /connections/{id}/ Deletes an existing PE
Connection resource from
the DB

application/json id (integer)

GET /fnimpls/ Retrieve all the available
function implementation
resources (Allows the
creation and manipulation
of function
implementations. Function
entities may have one or
more implementations.)

application/json No parameters

POST /fnimpls/ Creates a new Function
Implementation

application/json data (body),
example:
{
 "code" : "string"
,
 "parent_sig" :
"string" ,

DARE-777413 Public D3.6

 Page | 8

 "description" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

GET /fnimpls/{id}/

Retrieves a specific
Function implementation
resource

application/json id (integer)

PUT /fnimpls/{id}/ Updates an existing
function implementation
resource

application/json -id (integer)
-data (body),
example:
{
 "code" : "string"
,
 "parent_sig" :
"string" ,
 "description" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

DELETE /fnimpls/{id}/ Deletes an existing
Function Implementation
resource from the DB

application/json id (integer)

GET /fnparams/

Retrieves all the available
Function Parameters
resource (Allows the

application/json No parameters

DARE-777413 Public D3.6

 Page | 9

addition and manipulation
of function parameters.
Function parameters
are associated with
functions and are not
themselves workspace
items.
)

POST /fnparams/ Creates a new Function
Parameters resource in the
DB

application/json data (body),
example:
{

"parent_functio
n" : "string" ,
 "param_name"
: "string" ,
 "param_type" :
"string"
}

GET /fnparams/{id}/ Retrieves a specific
Function Parameters
resource

application/json id (integer)

PUT /fnparams/{id}/ Updates an existing
Function Parameters entry
in the DB

application/json -id (integer)
-data (body)
example:
{

"parent_functio
n" : "string" ,
 "param_name"
: "string" ,
 "param_type" :
"string"
}

DELETE /fnparams/{id}/ Deletes an existing
Function Parameters
resource from the DB

application/json id (integer)

GET /functions/

Retrieves all the Function
resources from the DB (A

application/json No parameters

DARE-777413 Public D3.6

 Page | 10

function allows addition
and manipulation of
dispel4py functions)

POST /functions/ Creates a new Function
Resource in the DB

application/json data (body),
example:
{
 "description" :
"string" ,
 "parameters" : [
 "string"
],
 "fnimpls" : [
 "string"
],
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "return_type" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

GET /functions/{id}/

Retrieves an existing
Function resource by id

application/json id (integer)

PUT /functions/{id}/

Updates an existing
function resource

application/json -id (integer)
-data(body),
example:
{
 "description" :
"string" ,
 "parameters" : [
 "string"
],
 "fnimpls" : [
 "string"
],
 "pckg" : "string"
,
 "workspace" :

DARE-777413 Public D3.6

 Page | 11

"string" ,
 "return_type" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

DELETE /functions/{id}/ Deletes an existing
function resource from the
DB

application/json id (integer)

GET /groups/ Retrieves all the available
groups from the DB. A
group represents a basic
user group resource

application/json No parameters

POST /groups/ Creates a new user group
in the DB

application/json data (body),
example:
{
“name”: “string”
}

GET /groups/{id}/ Retrieves a user group
based on its id

application/json id (integer)

PUT /groups/{id}/ Updates an existing user
group

application/json -id (integer)
-data (body),
example:
{
“name”: “string”
}

DELETE /groups/{id}/ Removes a user group
from the DB

application/json id (integer)

GET /literals/ Retrieves all the literal
entities resource from the
DB

application/json No parameters

POST /literals/ Creates a new Literal
Entities resource

application/json data (body),
example:
{
 "description" :
"string" ,

DARE-777413 Public D3.6

 Page | 12

 "value" :
"string" ,
 "name" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string"
}

GET /literals/{id}/ Retrieves a Literal Entities
resource based on its id

application/json id (integer)

PUT /literals/{id}/ Updates an existing Literal
Entities resource

application/json - id (integer)
- data (body),
example:
{
 "description" :
"string" ,
 "value" :
"string" ,
 "name" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string"
}

DELETE /literals/{id}/ Deletes a Literal Entities
resource from the DB

application/json id (integer)

GET /peimpls/ Retrieves all the available
PE Implementation
resources. A PE
Implementation allows the
creation and manipulation
of PE implementations. PEs
may have one or
more implementations

application/json No parameters

DARE-777413 Public D3.6

 Page | 13

POST /peimpls/ Creates a new PE
Implementation

application/json data (body),
example:
{
 "code" : "string"
,
 "parent_sig" :
"string" ,
 "description" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

GET /peimpls/{id}/ Retrieves a specific PE
Implementation from the
DB based on its ID

application/json id (integer)

PUT /peimpls/{id}/ Updates an existing PE
Implementation

application/json -id (integer)
- data(body),
example:
{
 "code" : "string"
,
 "parent_sig" :
"string" ,
 "description" :
"string" ,
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "name" :
"string"
}

DELETE /peimpls/{id}/ Deletes an existing PE application/json id (integer)

DARE-777413 Public D3.6

 Page | 14

Implementation from the
DB

GET /pes/ Retrieves all the available
PE resources from the DB.
A PE resource allows the
addition and manipulation
of dispel4py Processing
Elements (PEs)

application/json No parameters

POST /pes/ Creates a new PE in the DB application/json data (body),
example:
{
 "description" :
"string" ,
 "name" :
"string" ,
 "connections" :
[
 "string"
],
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "peimpls" : [
 "string"
]
}

GET /pes/{id}/ Retrieves a specific PE
based on its ID

application/json id (integer)

PUT /pes/{id}/ Updates an existing PE application/json -id(integer)
-data(body),
example:
{
 "description" :
"string" ,
 "name" :
"string" ,
 "connections" :
[

DARE-777413 Public D3.6

 Page | 15

 "string"
],
 "pckg" : "string"
,
 "workspace" :
"string" ,
 "clone_of" :
"string" ,
 "peimpls" : [
 "string"
]
}

DELETE /pes/{id}/ Deletes an existing PE in
the DB

application/json id (integer)

GET /registryusergroups
/

Retrieves all the available
registry user groups.
Extends the functionality
of the Django user groups

application/json No Parameters

POST /registryusergroups
/

Creates a new Registry
user group resource

application/json data (body),
example:
{
 "description" :
"string" ,
 "group_name" :
"string"
}

GET /registryusergroups
/{id}/

Retrieves a specific
Registry user group based
on its ID

application/json id (integer)

PUT /registryusergroups
/{id}/

Updates an existing
Registry user group

application/json -id(integer)
-data(body),
example:
{
 "owner" :
"string" ,
 "description" :
"string" ,
 "group_name" :

DARE-777413 Public D3.6

 Page | 16

"string"
}

DELETE /registryusergroups
/{id}/

Deletes an existing Registry
user group

application/json id (integer)

GET /users/ Retrieves all the existing
users in the DB. Represents
a Django Auth User entry

application/json No parameters

POST /users/

Creates a new user application/json data (body),
example:
{
 "username" :
"string" ,
 "password" :
"string" ,
 "first_name" :
"string" ,
 "last_name" :
"string" ,
 "email" :
"string"
}

GET /users/{id}/

Retrieves a specific user application/json id (integer)

PUT /users/{id}/ Updates a specific user application/json -id(integer)
-data(body),
example:
{
 "username" :
"string" ,
 "password" :
"string" ,
 "first_name" :
"string" ,
 "last_name" :
"string" ,
 "email" :
"string"
}

DELETE /users/{id}/ Deletes a specific user application/json id (integer)

DARE-777413 Public D3.6

 Page | 17

GET /workspaces/

Retrieves all the available
workspaces

application/json parameters:
- name: name
description: The
name of the
workspace we
want to display
paramType:
query
- name:
username
description: The
username the
workspace is
associated with
(workspaces are
uniquely
identiÕable for
individual users)
paramType:
query
- name: search
description:
perform a
simple full-text
on descriptions
and names
of workspaces.
paramType:
query

POST /workspaces/

Create a new workspace,
or clone an existing one. In
the case of
cloning only the Õeld name
is taken into account.

application/json parameters:
name: name
description: the
name of the
workspace.
name:
description
description: a
textual
description of
the workspace.
name: clone_of
description:

DARE-777413 Public D3.6

 Page | 18

indicates that a
cloning
operation is
requested.
paramType:
query
type: long

GET /workspaces/{id}/ Retrieves a specific
workspace

application/json name:
- ls: Lists the
requested
contents of the
given
workspace, as
well as its
packages, in
short
-kind: Lists
details of the
requested type
of workspace
item. Valid
values are pes,
functions,
literals, peimpls,
fnimpls and
packages.
-startswith:
Optionally filters
the displayed
items depending
on the string
their package
name starts
with. startswith
currently does
not work if not ls
is requested and
not kind
is provided.
- fqn: Match the
given ‘fqn’

DARE-777413 Public D3.6

 Page | 19

within the
workspace
exactly. The fqn
is in the form of
package.name. -
search: Perform
a simple full-text
search over the
workspace’s
contents. The
use of ‘search’
takes
precedence
over other
parameters.

PUT /workspaces/{id}/ Updates an existing
workspace

application/json -id (integer)
-data (body),
example:
{
 "clone_of" :
"string" ,
 "name" :
"string" ,
 "description" :
"string"
}

DELETE /workspaces/{id}/ Deletes an existing
workspace

application/json id (integer)

The User functionality (authentication, updates ,deletes etc) is handled via Keycloak. The Dispel4py and
all the other DARE components use the dare-login component (described in the following section) to
communicate with Keycloak and authenticate users. The successfully authenticated users are also
stored in the local Dispel4py Registry DB, in order to facilitate the Registry’s admin UI.

2.2 DARE Login

The DARE Login component is a simple Flask RESTful Web Service which exposes functionality for user
authentication, token validation, internal token issuance etc. This is used internally by the DARE
components since it just adds a layer between the components and the Keycloak service which is used

DARE-777413 Public D3.6

 Page | 20

in the backend. The only endpoints used directly by the users is the /auth/ endpoint. In the following
table, a description of the DARE Login API is provided.

HTTP
method

Name/Endpoint Description Content type Parameters

POST /auth/ Authenticates a user
performing HTTP call to
the Keycloak service. After
having successfully
authenticated the user,
Dispel4py Registry, CWL
registry and Execution API
are notified to check if the
user already exists in their
local DBs

application/json data (body),
example:
{
“username”:
“string”,
“password”:
“string”,
“requested_issu
er”: “string”
}

POST /validate-token/ Validates a token using the
Keycloak Service

application/json data (body),
example:
{
“access_token”:
“string”
}

POST /delegation-token/ Issues a token for internal
application use (from DARE
component to DARE
component)

application/json data (body),
example:
{
“access_token”:
“string”
}

POST /refresh-token/ When the access token
expires, uses the refresh
token to issue a new token
for a user

application/json data (body),
example:
{
“refresh_token”:
“string”,
“issuer”: “string”
}

2.3 CWL Workflow Registry

Since v3.0 of the DARE platform, CWL support and execution is provided, in addition to the dispel4py
workflow library. Therefore, a similar to the dispel4py Information Registry component is implemented.
The component registers execution environments (dockers) and CWL workflows which can then be
retrieved by name and version. An execution environment is represented by a Dockerfile and can be

DARE-777413 Public D3.6

 Page | 21

associated with one or many scripts. The relevant Django models are the DockerEnv which is related to
one or multiple DockerScript objects. On the other hand, the CWL workflows are divided into those of
CWL class Workflow and those of class CommandLineTool. A CWL of class Workflow is associated with
one or many CWLs of class CommandLineTool. In the CWL Workflow registry, the aforementioned
workflows are represented by the Django models Workflow and Workflow part respectively. Below, in
Table 3, a detailed list of the RESTful endpoints of this component is provided.

HTTP
method

Name/Endpoint Description Content type Parameters

POST /docker/ Creates a new Docker
Environment. The
environment consist of a
Dockerfile and can be
associated with one or
multiple DockerScript
entries (which represent
bash or python scripts)

application/json data (body),
example:
{

 "docker_
name": "name",

"docker_tag":
"tag",

"script_names":
["script1.sh",
"script2.sh"]
 "files": {

 "dockerfi
le": "string",

 "script1.s
h": "string.",

 "script2.s
h": "string"
 },

 "access_t
oken": "token"
 }

POST /docker/update_do
cker/

Updates an existing Docker
Environment

application/json data (body),
example:
{
"docker_name":
"name",
"docker_tag"

DARE-777413 Public D3.6

 Page | 22

"tag",
"update": {"tag":
"v2.0"},
"files":
{"dockerfile":
"string"},
"access_token":
"token"
}

POST /docker/provide_ur
l/

Updates an existing Docker
environment’s url field.
Once the docker image is
built and pushed in a
public repository, the
relevant Docker entry
should be updated with
the URL

application/json data (body),
example:
{
"docker_name":
"name",
"docker_tag":
"tag",
"docker_url":
"url",
"access_token":
"token"
}

DELETE /docker/delete_doc
ker/

 application/json data (body),
example:
{
"docker_name":
"name",
"docker_tag":
"tag",
"access_token":
"token"
}

GET /docker/bynametag
/

Retrieves a Docker
Environment using its
name and tag

application/json -docker_name
(string)
-
docker_tag(strin
g)

GET /docker/byuser/ Retrieves all the registered
Docker environments by
user

application/json -
requested_user(
string) if exists,
otherwise it uses
the user that

DARE-777413 Public D3.6

 Page | 23

performed the
request

GET /docker/download/ Downloads in a zip file the
Dockerfile and the relevant
scripts of a Docker
Environment

application/json -docker_name
(String)
-
docker_tag(strin
g)

POST /scripts/add/ Adds a new script in an
existing Docker
Environment

application/json data (body),
example:
{
"docker_name":
"name",
"docker_tag":
"tag",
"script_name":
"entrypoint.sh",
"files":
{"entrypoint.sh":
"string"},
"access_token":
"token"
 }

POST /scripts/edit/ Edits an existing script of a
Docker Environment

application/json data (body),
example:
{
"docker_name":
"name",
"docker_tag":
"tag",
"script_name":
"entrypoint.sh",
"files":
{"entrypoint.sh":
“string”},
"access_token":
"token"
}

DELETE /scripts/delete/ Deletes an existing script
from a docker
environment

application/json data (body),
example:
{
"docker_name":

DARE-777413 Public D3.6

 Page | 24

"name",
"docker_tag":
"tag",
"script_name":
"entrypoint.sh",
"access_token":
"token"
}

GET /scripts/download Downloads a specific script
from a Docker
Environment

application/json -
docker_name(st
ring)
-
docker_tag(strin
g)
-
script_name(stri
ng)

GET /scripts/byname Retrieves a specific script
based on the name & tag
of the Docker Environment
and on the name of the
script

application/json -
docker_name(st
ring)
-
docker_tag(strin
g)
-
script_name(stri
ng)

POST /workflows/ Creates a new CWL
workflow of class
Workflow

application/json data (body),
example:
{"workflow_nam
e":
"demo_workflo
w.cwl",
"workflow_versi
on": "v1.0",
"spec_file_name
": "spec.yaml",
"docker_name":
"name",
"docker_tag":
"tag",
"workflow_part_
data":[{"name":

DARE-777413 Public D3.6

 Page | 25

arguments.cwl”,
"version":"v1.0",
"spec_name":
"arguments.yam
l"},{"name":
"tar_param.cwl"
,
 "version"
:"v1.0",
"spec_name":
"tar_param.yaml
"}],
"files":
{"demo_workflo
w.cwl":"string",
"spec.yaml":
"string",
"arguments.cwl"
: "string",
"arguments.yam
l": "string",
"tar_param.cwl"
: "string",
"tar_param.yaml
": "string"},
"access_token":
"token"
}

POST /workflows/update
_workflow/

Updates an existing CWL
workflow of class
Workflow

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"files":
{"workflow_file"
: "string",
"spec_file":
"string",},
"update":
{"version":"v1.1"

DARE-777413 Public D3.6

 Page | 26

},
"access_token":
"token"
}

POST /workflows/update
_docker/

Associate a CWL workflow
of class Workflow with a
different Docker
Environment

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"docker_name":
"test",
"docker_tag":
"v1.0",
"access_token":
"token"
}

DELETE /workflows/delete_
workflow/

Deletes an existing CWL
workflow (class Workflow)
and all the associated
Workflow parts (class
CommandLineTool)

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"access_token":
"token"
}

GET /workflows/bynam
eversion/

Retrieve a CWL workflow
of class Workflow and its
associated workflow parts
as well as the related
docker environment, based
on the workflow name and
version

application/json -
workflow_name
(string)
-
workflow_versio
n(string)

GET /workflows/downlo
ad

Downloads in a zip file all
the CWL files (Workflow
and CommandLineTool) as
well as the relevant

application/json -
workflow_name
(string)
-

DARE-777413 Public D3.6

 Page | 27

Dockerfile and scripts (if
the parameter dockerized
is provided)

workflow_versio
n(string)
-
dockerized(bool
ean)

POST /workflow_parts/a
dd/

Adds a new
CommandLineTool CWL in
an existing CWL workflow

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"workflow_part_
name":"argume
nts.cwl",
"workflow_part_
version": "v1.0",
"spec_name":
"arguments.yam
l",
"files":
{"arguments.cwl
": "string",
"arguments.yam
l": "string"},
"access_token":
"token"
}

POST /workflow_parts/e
dit/

Edits an existing
CommandLineTool CWL
workflow

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"workflow_part_
name":"argume
nts.cwl",
"workflow_part_
version": "v1.0",
"spec_name":

DARE-777413 Public D3.6

 Page | 28

"arguments.yam
l",
"files":
{"arguments.cwl
":"string",
"arguments.yam
l": "string"},
"update":
{"version":"v1.1”
},
"access_token":
"token"
}

DELETE /workflow_parts/d
elete/

Deletes an existing
CommandLIneTool CWL
workflow

application/json data (body),
example:
{
"workflow_nam
e":"demo_workf
low.cwl",
"workflow_versi
on": "v1.0",
"workflow_part_
name":
"arguments.cwl"
,
 "workflo
w_part_version"
: "v1.0",
"access_token":
"token"
}

GET /workflow_parts/by
nameversion

Retrieves a specific
CommandLineTool CWL
based on its parent (name
& version) and its own
name and version

application/json -
workflow_name
(string)
-
workflow_versio
n(string)
-
workflow_part_
name(string)
-
workflow_part_
version(string)

DARE-777413 Public D3.6

 Page | 29

GET /workflow_parts/d
ownload

Downloads a specific CWL
of class CommandLineTool

application/json -
workflow_name
(string)
-
workflow_versio
n(string)
-
workflow_part_
name(string)
-
workflow_part_
version(string)

POST /accounts/login/ Authenticates a user
(login) used by the dare-
login component described
in section 2.2 when a user
calls the /auth/ endpoint
of the dare-login. If the
user does not exist in the
CWL workflow registry’s
local DB, it creates a new
user

application/json data (body),
example:
{
“username”:
“string”,
“password”:”stri
ng”,
“access_token”:
”string”,
“email”:”string”,
“given_name”:”s
tring”,
“family_name”:”
string”
}

2.4 Execution API

The Execution API component is a Flask RESTful Web Service, used in order to instantiate new execution
environments for dispel4py or CWL workflows, for folder and files handling/listing, for monitoring etc.
In Table 4, all the Execution API endpoints are listed.

HTTP
method

Name/Endpoint Description Content type Parameters

POST /create-folders/ Endpoint used by the
/auth/ endpoint of dare-
login. Checks if the user’s
workspace in the DARE
platform is available,
otherwise it creates the

application/json data (body),
example:
{
 "userna
me”:”string”
}

DARE-777413 Public D3.6

 Page | 30

necessary folder structure

POST /d4p-mpi-spec/ Used internally by the
dispel4py execution
environment in order to
retrieve the respective PE
Implementation and
spec.yaml

application/json data (body),
example:
{
"pe_imple":
"name",
“nodes”: 3,
“input_data”: {
}
}

POST /run-d4p/ Creates a new dispel4py
execution environment,
using the Kubernetes API.
Generates a new run
directory, stored under the
user’s “runs” folder(i.e.
/<home>/<username>/run
s/). All the execution
results are stored in the
generated run directory.

application/json data (body),
example:
{
“access_token:
“string”,
“workspace”:
“string”,
“pckg”: “string”,
“pe_name”:”stri
ng”,
“target”:”simple
”,
“nodes”:1
}

POST /run-specfem/ Endpoint dedicated to
executing the Specfem3D
application. Generates a
new run directory, stored
under the user’s “runs”
folder(i.e.
/<home>/<username>/run
s/). All the execution
results are stored in the
generated run directory.

application/json data (body),
example:
{
“access_token:
“string”,
“folder_name”:”
string”,
“filename”:”strin
g”,
“n_nodes”:22
}

POST /run-cwl/ Endpoint to instantiate an
execution environment for
CWL workflow execution.
The environment to be
instantiated is retrieved
from the CWL using the

application/json data (body),
example:
{
“access_token”:
”string”,
“nodes”:12,

DARE-777413 Public D3.6

 Page | 31

CWL Workflow Registry.
Generates a new run
directory, stored under the
user’s “runs” folder(i.e.
/<home>/<username>/run
s/). All the execution
results are stored in the
generated run directory.

“workflow_nam
e”:”string”,
“workflow_versi
on”:”string”,
“input_data”: {
“example1”:”stri
ng”
}
}

POST /upload/ Endpoint used to upload
files in the DARE platform.
The files are stored under
the user’s home directory.
The home directory is
named after his/hers
username and inside there
are 3 folders, i.e. uploads,
debug and runs. All the
uploaded files are stored
under the user’s “uploads”
directory

application/json data (body),
example:
{
“dataset_name”
:”string”,
“path”:”string”,
“access_token”:
”string”,
“files”: [<file
list>]
}

GET /my-files/ Lists all the users’
directories under the
“uploads”, “runs” and
“debug” folders. If the
parameter num_run_dirs is
present, the response is
limited to the most recent
directories based on the
number provided in the
aforementioned parameter

application/json -
access_token(str
ing)
-
num_run_dirs(in
teger)

GET /list/ Lists all the files inside a
specific directory. This
directory could be
retrieved from the
previous endpoint

application/json -
access_token(str
ing)
-path(string)

GET /download/ Downloads a specific file
from the DARE platform.
To find the file’s full path
use the two previous
endpoints

application/json -
access_token(str
ing)
-path(string)

DARE-777413 Public D3.6

 Page | 32

GET /send2drop/ Uploads files from the dare
platform to B2DROP

application/json -
access_token(str
ing)
-path(string)

GET /cleanup/ Clears the user’s folders
(uploads, runs, debug)

application/json -
access_token(str
ing)
-runs(boolean)
-
uploads(boolean
)
-debug(boolean)

2.5 Provenance API

We report in this section the overview and description of the lineage methods characterising the API
exposed by the S-ProvFlow system [3]. The methods return information in JSON-LD format and are
interactively used by the tools described in D3.7 and D3.8. Full description is available in OpenAPI v3
format at https://platform.dare.scai.fraunhofer.de/prov/swagger/

Provenance acquisition

HTTP
method

Name/Endpoint Description Content type Parameters

POST workflowexecutions/insert Bulk insert of bundle or
lineage documents in
JSON format

application/json JSON with
one of more
provenance
documents

POST workflowexecutions/<id>/edit Update of the
description of a
workflow execution.
Users can improve this
information in free text.

application/json JSON with a
description
property with
the updated
text

GET workflowexecutions/<id>/delete Delete a workflow
execution trace,
including its bundle and
all its lineage
documents.

application/json

POST workflowexecutions/import Import lineage traces application/json runId,

https://platform.dare.scai.fraunhofer.de/prov/swagger/

DARE-777413 Public D3.6

 Page | 33

from other workflow
systems and maps them
to S-PROV. The current
implementation
supports the import of
traces in CWLProv.
Clients can specify their
own custom runId and
the location of the
resources. For instance,
the hostname of a data
catalogue where all the
files will be stored.

resultLocatio
n, format

Monitoring, validation and lineage queries

HTTP
method

Name/Endpoint Description Content
type

Parameters

GET workflowexecutions(/<id>
| ?<query string>)

Provides a list of
workflow runs
performed by one or
more users. Runs can
be searched by
specifying the
parameters values
used in the workflow
and by the metadata
associated with the
data and the data-
formats. Mode of the
search can also be
indicated (mode ::=
(OR | AND). Boolean
operators are applied
metadata and
parameters’ values
within each run.

applicatio
n/json

usernames,
wasAssociatedWit
h, terms,
expressions,
clusters, mode,
functionNames,
formats, types,
start, limit

GET workflowexecutions/<runi
d>/showactivity?<query-
string>

Extract detailed
information of the
processes executed in
each run. It shows
progress, anomalies

applicatio
n/json

level, start, limit

DARE-777413 Public D3.6

 Page | 34

(such as exceptions or
systems’ and users
messages), count of
the data produced
and whether it is
available for
download. This
method can also be
used for runtime
monitoring.

GET instances/<id>
invocations/<id>

Extract details about
the invocation of an
instance of a
workflow process.

applicatio
n/json

wasAssociateFor,
start, limit

GET data(/<id> | ?<query
string>)

Extract metadata
associated with a
Data item and its
members, the
DataGranules. The
data is selected by
specifying the id or a
query-string. Query
parameters allow
searching by
attribution (to a
workflow or one of its
processes/functions)
or by specifying
metadata expressions
indicating single
values, ranges, lists,
and data formats.
Mode of the search
can also be indicated
(mode ::= (OR | AND)).

applicatio
n/json

usernames,
wasAttributedTo,
wasGeneratedBy,
terms, expressions,
clusters, mode,
functionNames,
formats, types,
start, limit

POST data/filterOnAncestor?<
query string>

Filter a list of data ids
based on the
existence of at least
one ancestor in their
data dependency
graph, according to a
matching metadata

applicatio
n/json

terms, expressions,
wasAssociatedWit
h, ids

DARE-777413 Public D3.6

 Page | 35

expression indicating
single values, ranges
or lists, and data
formats. Maximum
depth level and mode
of the search can also
be indicated.

GET data/<id>/derivedData
data/<id>/wasDerivedFr
om

Starting from a
specific data entity of
the data dependency
is possible to navigate
through the derived
data (11) or
backwards across the
element’s data
dependencies (12).
The number of
traversal steps is
provided as a
parameter (level).

applicatio
n/json

level

GET terms?<query string>

Return a list of
discoverable
metadata terms
based on their
appearance in a
collection of runIds
and usernames,
passed as
parameters, or for
the whole
provenance archive.
Terms are returned
indicating their type
(when consistently
used), min and max
values and their
number of
occurrences within
the scope of the
search.

applicatio
n/json

runIds,
usernames,
aggregationLevel

DARE-777413 Public D3.6

 Page | 36

Comprehensive Summaries (Experimental): These methods are used to produce visual analytics
within the BDV (Bulk Dependencies Visualiser) of the s-ProvFlow. They allow clients to cluster the

returning data by specifying a particular property in the groupBy parameter.

HTTP
method

Name/Endpoint Description Content
type

Parameters

GET summaries/workflowexecu
tions?<query string>

Returns an
overview of the
distribution of the
computation
within a single run.
It reports the size
of data
movements
between the
workflow
components, their
instances or
invocations
depending on the
specified
granularity level.

application
/json

runid, minidx,
maxidx, groupby,
mintime, maxtime,
level

GET summaries/collaborative?<
query string>

Extract
information about
the reuse and
exchange of data
between workflow
executions based
on terms’ values-
ranges and a
group of users.
The API method
allows for inclusive
or exclusive (mode
::= (OR | AND)
queries on the
terms’ values.

application
/json

usernames, terms,
wasAssociatedWith,
clusters, mode,
groupby,
expressions, level,
functionNames,
formats

DARE-777413 Public D3.6

 Page | 37

2.6 Semantic-data API
DARE Semantic Data Discovery Service is an application to search through linked data. The main task is
to make the metadata stored by the Data Catalogue available via search operations. But also external
data catalogs can be added as data sources via configuration of the webservice and thus be made
centrally searchable. The prerequisite is that the catalog data is stored in W3C's DCAT format.

HTTP
method

Name/Endpoint Description Content type Parameters

GET /search/ Offers a full-text search
query and filter fields to
search within the index.

application/json query, start,len,
format, id,
endpoint, type,
text

GET /index/ Lists all indexed datasets
with source endpoint and
unique URI.

application/json

DELETE /index/ Deletes the index of all
datasets. Usefull to reindex
everything after a schema
change.

application/json

PUT /index/ Create/Updates index from
all datasets found within
the configured endpoints.

application/json

GET /index/endpoints/ Lists the exact name of all
endpoints configured in
this service.

application/json

GET /index/endpoints/<
name>

Lists all indexed datasets
on a specified endpoint
with source endpoint and
unique URI.

application/json name

DELETE /index/endpoints/<
name>

Deletes the index for all
datasets from a specified
endpoint. Single dataset
only is possible.

application/json name

PUT /index/endpoints/<
name>

Create/Updates index from
all datasets found in a
specified endpoints. Single
dataset only is possible.

application/json name

DARE-777413 Public D3.6

 Page | 38

GET /monitor/heartbeat Offers an easy-to-call
resource to test the
connection to Semantic
Data Discovery.

application/json

GET /monitor/status Checks connection to the
external services solr and
endpoints.

application/json

2.7 Playground module

The DARE platform provides a testing execution environment to the users, in order to have immediate
access to the generated files and logs during the workflow’s development. Additionally, this module
simulates a user’s terminal, therefore the user can execute a dispel4py or CWL command using the
playground’s API. This component is a simple Flask RESTful Web Service and its endpoints are listed in
Table 5.

HTTP
method

Name/Endpoint Description Content type Parameters

POST /create-folders/ Endpoint used by the
/auth/ endpoint of dare-
login. Checks if the user’s
workspace in the DARE
platform is available,
otherwise it creates the
necessary folder structure

application/json data (body),
example:
{
 "userna
me”:”string”
}

POST /playground/ Simulates a dispel4py
execution

application/json data (body),
example:
{
“access_token:
“string”,
“workspace”:
“string”,
“pckg”: “string”,
“pe_name”:”stri
ng”,
“target”:”simple
”,
“nodes”:1
}

POST /run-command/ Simulate a user’s terminal application/json data (body),

DARE-777413 Public D3.6

 Page | 39

example:
{
“access_token:
“string”,
“run_dir”:”string
”(optional),
“command”:”stri
ng”
}

POST /upload/ Endpoint used to upload
files in the DARE platform.
The files are stored under
the user’s home directory.
The home directory is
named after his/hers
username and inside there
are 3 folders, i.e. uploads,
debug and runs. All the
uploaded files are stored
under the user’s “uploads”
directory

application/json data (body),
example:
{
“dataset_name”
:”string”,
“path”:”string”,
“access_token”:
”string”,
“files”: [<file
list>]
}

GET /my-files/ Lists all the users’
directories under the
“uploads”, “runs” and
“debug” folders. If the
parameter num_run_dirs is
present, the response is
limited to the most recent
directories based on the
number provided in the
aforementioned parameter

application/json -
access_token(str
ing)
-
num_run_dirs(in
teger)

GET /list/ Lists all the files inside a
specific directory. This
directory could be
retrieved from the
previous endpoint

application/json -
access_token(str
ing)
-path(string)

GET /download/ Downloads a specific file
from the DARE platform.
To find the file’s full path
use the two previous
endpoints

application/json -
access_token(str
ing)
-path(string)

DARE-777413 Public D3.6

 Page | 40

3 dispel4py and CWL-specific interfaces
The DARE platform aims to ease the orchestration of persistent computational services and the
establishment of high-throughput data channels between them. This is achieved by creating stream-
based workflows and establishing connection interfaces between the main operators through which
data is either consumed or forwarded to output, called processing elements (PEs). In addition to
streaming workflows, DARE is also capable of registering and executing CWL workflows.

In DARE, these PEs and workflows are provided by the dispel4py and CWL registries. The workflows and
processing elements defined and implemented can also be seen as an API between users and the DARE
platform via its WaaS endpoint. A basic collection of PEs available via the DARE platform has been
provided in D3.51 and remains unchanged. Further development of workflows has taken place in order
to implement the two DARE use-cases, details of which are provided in D6.4 and D7.4.

3.1 Provenance Controls in dispel4py

In D3.5 and in the literature [3] we have introduced the concept of provenance types to support users
who may want to customise the extraction of metadata from a workflow PEs, or to tune the granularity
and precision of the recorded data dependencies. Types are reusable across the workflow operators
and can be assigned to the PEs by using the dispel4py Provenance Configuration framework. This
consists in a JSON document, which is used by the workflow system to prepare the execution for
customised provenance capturing. In the last phase of the project we simplified the information that
had to be specified by the research developers in the JSON, and improved the flexibility of its adoption
by DARE, as well as other systems, fostering automation. In the following example, we show the JSON
document that configure the provenance for the MySplitMerge2 workflow.

prov_config = {
 's-prov:description' : "API demo",
 's-prov:workflowName': "splitMerge",
 's-prov:workflowType': "dare:Thing",
 's-prov:workflowId' : "splitmerge",
 's-prov:save-mode' : 'service',
 's-prov:WFExecutionInputs': [],
defines the Provenance Types and Provenance Clusters for the Workflow Components
 's-prov:componentsType' : {
 'mergePE': {'s-prov:type':(AccumulateFlow,),
 's-prov:prov-cluster':'seis:Processor'},
 'splitPE': {'s-prov:type':(DataInGranuleType,),
 's-prov:prov-cluster':'seis:Processor'}}
 }

Compared to the version used at the beginning of DARE, we have removed the properties indicating
the user and run ids. The API automatically identifies who started the workflow and assigns an id to the
run. Both ids propagate to all the relevant components of the DARE platform, together with

1 http://project-dare.eu/wp-content/uploads/2019/03/D3.5-DARE-API-I_final_draft.pdf
2 https://gitlab.com/project-dare/exec-api/-/raw/master/examples/mySplitMerge/scripts/mySplitMerge_prov.py

http://project-dare.eu/wp-content/uploads/2019/03/D3.5-DARE-API-I_final_draft.pdf
https://gitlab.com/project-dare/exec-api/-/raw/master/examples/mySplitMerge/scripts/mySplitMerge_prov.py

DARE-777413 Public D3.6

 Page | 41

authentication credentials. This fosters secure data access, delegation of operations to other integrated
systems and eventually trusted traceability.

Currently, users still have to specify the workflowName of workflowId. However, these could be linked
to the DARE Registry and set by the API. This is achievable thanks to the decoupling of the JSON
configuration from the source code of the workflow, and to the implementation of additional dispel4py
command line parameters that play a role in the automation of configuration, extraction and storage
of provenance data. We describe these new parameters below.

-d <input-data>
--provenance-bearer-token = <user-OpenAuth-Token>
--provenance-config = inline (when provenance JSON in the workflow code)
 file <filename> (when provenance JSON is provided as a file)
--provenance-repository-url = <s-ProvFlow ingestion URL>
--provenance-runid = <DARE generated run Id>
--provenance-userid = <subject>@<issuer>

4 Conclusions
The DARE platform aims to provide comprehensive and well-integrated functionality to research
engineers and scientists to help them manage and manipulate large distributed data and remote
systems with little knowledge of their underlying intricacies. The platform’s API’s role is to realise the
aforementioned user/developer-friendly interface capable of encapsulating the diversity of data,
methods and tools. This is achieved via providing functionality to describe different types of workflows,
with the DARE platform taking care of its execution, provenance tracking, output file handling, etc.

5 References
[1] Klampanos et al., (2020). DARE Platform: a Developer-Friendly and Self-Optimising Workflows-as-a-
Service Framework for e-Science on the Cloud. Journal of Open Source Software, 5(54), 2664,
https://doi.org/10.21105/joss.02664

[2] Atkinson, M., Filgueira, R., Gemünd, A., Karkaletsis, V., Klampanos, I., Koukourikos, A., Levray, A.,
Lindner, M., Magnoni, F., Pagé, C., Rietbrock, A., Spinuso, A., Themeli, S., Tsilimparis, X., & Wolf, F.
(2020). DARE Architecture and Technology internal report. https://doi.org/10.5281/ZENODO.3697898

[3] Spinuso et al., (2019). Active provenance for Data-Intensive workflows: engaging users and
developers, 15th International Conference on eScience (eScience), IEEE, 2019.

[4] Klampanos I.A., Martin P., & Atkinson M.P. (2019, August 6). Consistency and Collaboration for Fine-
Grained Scientific Workflow Development: The dispel4py Information Registry. Zenodo.
http://doi.org/10.5281/zenodo.3361395

https://doi.org/10.21105/joss.02664
https://doi.org/10.5281/ZENODO.3697898
http://doi.org/10.5281/zenodo.3361395

	Executive Summary
	1 Introduction
	1.1 Approach and Relationship with other Work Packages and Deliverables
	1.2 Methodology and Structure of the Deliverable

	2 DARE API
	2.1 Dispel4py Information Registry
	2.2 DARE Login
	2.3 CWL Workflow Registry
	2.4 Execution API
	2.5 Provenance API
	2.6 Semantic-data API
	2.7 Playground module

	3 dispel4py and CWL-specific interfaces
	3.1 Provenance Controls in dispel4py

	4 Conclusions
	5 References

