
DARE-777413 Public D4.2

 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

D4.2 Big Data Analytics Toolkit II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.2 Big Data Analytics Toolkit II

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.2
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Sissy Themeli (NCSR-D), Iraklis Klampanos (NCSR-D)

Contributor(s)

Reviewer(s) Fraunhofer

Document description

The report accompanies the software deliverable for the Big
Data Analytics components integrated in the DARE platform.
It provides a short description on the different components,
their role within the DARE platform and their current status of
maturity. It also provides links to relevant code and
documentation.

DARE-777413 Public D4.2

 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

1 09/09/2020 Initial version S. Themeli (NCSR-D)
2 16/12/2020 Updates and edits throughout I. Klampanos (NCSR-D)
3 30/12/2020 Final I. Klampanos (NCSR-D)

DARE-777413 Public D4.2

 Page | 3

Executive Summary
This report acts as an overview of the technical developments pertaining to the Big Data Analytics
toolkit incorporated in the DARE platform.
The document summarises the functionality of the relevant components, provides information on
their deployment and availability and refers to the relevant code and documentation available
through the project’s GitLab repositories.

DARE-777413 Public D4.2

 Page | 4

Table of Contents
1. 4

1.1 Purpose and scope 5

1.2 Relationship with other Work Packages and Deliverables 5

1.3 Methodology and Structure of the Deliverable 5

2. 4

2.1 Integrated DARE platform 6

2.2 DARE platform deployment 7
i. 6
ii. 6
iii. 10

3. 11

1. Introduction
The present report acts as an overview of the technical developments pertaining to the Big Data
Analytics toolkit incorporated in the DARE platform. It summarises the functionality of the relevant
components, provides information on their deployment and availability and refers to the relevant
code and documentation available through the project’s GitLab repositories.

○ 1.1 Purpose and scope
This deliverable reports on the basis of the DARE platform, which is a collection of dockerised
components deployed and managed by Kubernetes.

○ 1.2 Relationship with other Work Packages and Deliverables
Other components and integration activities effectively take place on the technical basis provided
by the big-data and analytics foundation. As the DARE platform has undergone a number of design
and implementation steps during the project, this deliverable has some overlap with D4.8 –
Integrated software stack and the semantic registry II.

○ 1.3 Methodology and Structure of the Deliverable
We provide a list of DARE-specific and 3rd-party components. Due to the relationship of the
components and the Kubernetes underlying system to deployment, we also provide basic
deployment and installation instructions.

2. DARE Big Data Analytics Components
The components comprising the DARE Big Data Analytics Toolkit, as well as the methodology
followed have initially been based on the Big Data Integrator (BDI) platform, which incorporated
initial versions of the tools required for serving the DARE use cases. These include both general-
purpose Big Data Processing tools and domain-specific tools addressing the needs of the
participating communities. The tools integrated at this point are described in the following
subsection. The Big Data Analytics Toolkit is available in the dare-platform GitLab Repository1.

1 https://gitlab.com/project-dare/dare-platform

https://gitlab.com/project-dare/dare-platform
https://gitlab.com/project-dare/dare-platform

DARE-777413 Public D4.2

 Page | 5

○ 2.1 Integrated DARE platform
The DARE platform comprises tools and systems that enable the easy creation of scalable Big Data
applications. It is heavily dependent and built on Docker2 and Kubernetes3 technologies, to ensure
the ease of packaging, deployment, maintainability and modularity. Moreover, it provides a wide
variety of systems packaged as Docker images and verified in various use-case scenarios. Therefore,
the DARE platform consists of various general-purpose components as well as the DARE
components. The DARE platform is extensively documented online, at https://project-
dare.gitlab.io/dare-platform/, which includes installation/ deployment documentation, use
examples, etc.

The general-purpose components provide generic functionality to the platform such as storage,
monitoring and authentication while the DARE-specific components implement elements of the
DARE Architecture (detailed in D2.2). All the components are containerised and by design share
common resources of the cluster.

The core DARE components, currently deployed in the operational environment are:

● Dispely4py Information Registry4, which is a Django RESTful Web Service that allows the
registration, sharing and manipulation of dispel4py workflows. After registration, workflows
can be accessed and executed by name.

● CWL Workflow Registry5, which is a Django RESTful Web Service, enabling the use of
different Docker execution environments and the registration of CWL workflows. The
environments and workflows can be accessed and executed by name and version.

● DARE Login API6, a central Authentication component that uses Keycloak7 in the backend.
● DARE Execution API8, which is a Flask-based9 RESTful Web Service used to instantiate

dispel4py and CWL execution environments, folders and files handing/listing, uploading and
downloading files, etc.

● S-prov10, which is a RESTful Web Service allowing the storage and retrieval of Provenance
logs.

● Playground11, which is a RESTful Web Service providing a testing environment to the users.
● Semantic-data-discovery12, which is a RESTful Web Service for searching registered data in

the DARE data catalogue.
● sprov-viewer13, which is a graphical user interface (GUI) to facilitate the search and

visualisation of provenance logs.

These components make use of 3rd-party underlying database systems, such as:

● MySQL databases, used by Dispel4py and CWL Registries
● MongoDB, used by the Provenance API

2 https://www.docker.com
3 https://kubernetes.io
4 https://gitlab.com/project-dare/d4p-registry
5 https://gitlab.com/project-dare/workflow-registry
6 https://gitlab.com/project-dare/dare-login
7 https://www.keycloak.org
8 https://gitlab.com/project-dare/exec-api
9 https://flask.palletsprojects.com/en/1.1.x/
10 https://gitlab.com/project-dare/s-ProvFlow
11 https://gitlab.com/project-dare/playground
12 https://gitlab.com/project-dare/semantic-data-discovery
13 https://gitlab.com/project-dare/s-ProvFlow

https://project-dare.gitlab.io/dare-platform/
https://project-dare.gitlab.io/dare-platform/
https://gitlab.com/project-dare/d4p-registry
https://gitlab.com/project-dare/workflow-registry
https://gitlab.com/project-dare/dare-login
https://gitlab.com/project-dare/exec-api
https://gitlab.com/project-dare/s-ProvFlow
https://gitlab.com/project-dare/playground
https://gitlab.com/project-dare/semantic-data-discovery
https://gitlab.com/project-dare/s-ProvFlow
https://www.docker.com/
https://kubernetes.io/
https://gitlab.com/project-dare/d4p-registry
https://gitlab.com/project-dare/workflow-registry
https://gitlab.com/project-dare/dare-login
https://www.keycloak.org/
https://gitlab.com/project-dare/exec-api
https://flask.palletsprojects.com/en/1.1.x/
https://gitlab.com/project-dare/s-ProvFlow
https://gitlab.com/project-dare/playground
https://gitlab.com/project-dare/semantic-data-discovery
https://gitlab.com/project-dare/s-ProvFlow

DARE-777413 Public D4.2

 Page | 6

● Virtuoso, used as backend to the semantic-data component
● Rook ceph storage, used by the Execution API to provide the users with a Shared File System

that can be accessed from the RESTful API as well as during the workflow execution

The Kubernetes components deployed to support the DARE platform are the following:

● Rook ceph, used as Shared File System
● Keycloak, which acts as the Authentication broker, allowing to use 3rd party authentication

providers, such as, for instance Google, EGI Check-in14, and others.
● MPI-operator, used to enable the execution of MPI jobs on the Kubernetes cluster
● Nginx web servers used by multiple DARE components
● Cert-Manager, which manages the issue of SSL certificates.

○ 2.2 DARE platform deployment

i. Operating System specification and requirements

The DARE platform deployment has been tested with the operating system Ubuntu Server 18.04.
Version 18.04 version is a long-term support version (LTS), and it is supported until 2028.

We assume that the deployment takes place in a cluster of machines and each machine has two
block devices. The first one (/dev/vda) will be used for the installation of the operating system while
the second one (/dev/vdb) will be used by Ceph and will remain unformatted. Every machine in the
cluster is identical. Moreover, at least one of the machines should have two network interfaces (say,
eth0 and eth1). The first one will be used for the communication with the other cluster nodes while
the second one will be used for installing the bare-metal load balancer.

The workflow for installing the basic operating system is the usual one. The operator has to provide
the username and password for the initial user when asked by the Ubuntu installer. Moreover, it
has to provide the network details such as hostname, domain name, IP, netmask, gateway and DNS.
These details can be provided by the network operator of the data centre.
After the successful installation of the operating system the passwordless ssh root access must be
activated.

The aforementioned step can be skipped if the machines are virtual and the operating system is
created from a template image.

ii. Kubernetes and general-purpose components installation

As already mentioned, the DARE platform is based on Kubernetes and Docker therefore, before
installing the DARE platform some basic components should be available in the infrastructure.
Below, the necessary steps are provided:

1. Kubernetes setup
a. Install docker: sudo apt install docker.io
b. Enable docker: sudo systemctl enable docker
c. Add Kubernetes signing key:

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add

14 https://www.egi.eu/services/check-in/

https://www.egi.eu/services/check-in/

DARE-777413 Public D4.2

 Page | 7

d. Add Xenial Kubernetes Repository: sudo apt-add-repository "deb
http://apt.kubernetes.io/ kubernetes-xenial main"

e. Install Kubeadm : sudo apt install kubeadm=1.15.3-00 kubectl=1.15.3-00
kubelet=1.15.3-00

f. Initialize Kubernetes on the master node: sudo kubeadm init
g. Start using your cluster : mkdir -p $HOME/.kube & sudo cp -i

/etc/kubernetes/admin.conf $HOME/.kube/config & sudo chown $(id -u):$(id -g)
$HOME/.kube/config

h. Deploy a Pod Network through the master node : kubectl apply -f
"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 | tr -d
'\n')"

i. Run: kubectl taint nodes --all node-role.kubernetes.io/master-
2. Install the MPI-Operator (v 0.1.0)

a. wget https://github.com/kubeflow/mpi-operator/archive/0.1.0.tar.gz
b. tar -xvzf 0.1.0.tar.gz
c. cd mpi-operator-0.1.0/deploy/
d. In 3-mpi-operator.yaml, change the two images (mpi-operator & kubectl-delivery) from

latest to 0.1.0
e. Deploy mpi-operator:

 i. kubectl create -f 0-crd.yaml
 ii. kubectl create -f 1-namespace.yaml
 iii. kubectl create -f 2-rbac.yaml
 iv. kubectl create -f 3-mpi-operator.yaml

3. Deploy the Rook Shared File System (release-0.8)

a. git clone https://github.com/rook/rook.git
b. git checkout release-0.8
c. cd rook/cluster/examples/kubernetes/ceph

i. kubectl create -f operator.yaml
ii. kubectl create -f cluster.yaml
iii. kubectl create -f filesystem.yaml
iv. kubectl create -f storageclass.yaml

d. NOTE: rook-ceph-block storageclass is not default. To set as default:
kubectl patch storageclass rook-ceph-block -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

4. Deploy Ingress
a. kubectl apply -f

https://raw.githubusercontent.com/kubernetes/ingress-
nginx/130af33510882ae62c89277f2ad0baca50e0fafe/deploy/static/mandatory.yaml

b. Check ingress controller: kubectl get pods -n ingress-nginx
c. mkdir ingress-deployment && cd ingress-deployment
d. vim nginx-ingress.yaml
e. Add the following in the file:

https://github.com/kubeflow/mpi-operator/archive/0.1.0.tar.gz
https://github.com/rook/rook.git
https://github.com/rook/rook.git
https://raw.githubusercontent.com/kubernetes/ingress-nginx/130af33510882ae62c89277f2ad0baca50e0fafe/deploy/static/mandatory.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/130af33510882ae62c89277f2ad0baca50e0fafe/deploy/static/mandatory.yaml
https://raw.githubusercontent.com/kubernetes/ingress-nginx/130af33510882ae62c89277f2ad0baca50e0fafe/deploy/static/mandatory.yaml

DARE-777413 Public D4.2

 Page | 8

Figure 1: Ingress yaml specification

f. kubectl apply -f nginx-ingress.yaml
g. Check the created service: kubectl get svc -n ingress-nginx

5. Install Helm & Tiller

DARE uses the Helm package manager (https://helm.sh/) for Kubernetes to install and manage
some of the external packages it uses. This facilitates the installation and upgrade of external
components and prevents duplicated work on Kubernetes descriptors for well-known applications.
To use Helm, we need to install the helm command and corresponding service (Tiller) first.
Summary:

a. Download 3.1.1 release from https://github.com/helm/helm/releases
b. Install helm binary to /usr/local/bin
c. Initialize helm and Tiller
d. Update package sources

Download & unpack release package

$ wget https://get.helm.sh/helm-v3.1.1-linux-amd64.tar.gz

$ tar xf helm-v3.1.1-linux-amd64.tar.gz

move to path

$ sudo mv linux-amd64/helm /usr/local/bin/

https://helm.sh/
https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

DARE-777413 Public D4.2

 Page | 9

create service account

$ kubectl create serviceaccount -n kube-system tiller

create role for RBAC

$ kubectl create clusterrolebinding tiller-binding --clusterrole=cluster-admin --
serviceaccount kube-system:tiller

Update package sources

$ helm repo update

6. Install cert-manager

To maintain certificates for the externally reachable services and pages, DARE uses the Let’s
Encrypt Certification Authority (https://letsencrypt.org/) through its ACME protocl
(https://tools.ietf.org/html/rfc8555). The Cert-Manager addon (https://cert-manager.io)
automates this process even further so that certificates are automatically issued, configured in the
ingress and updated based on annotations in our Kubernetes descriptors. For installation, we use
the official Helm package from Helm hub (https://hub.helm.sh/charts/jetstack/cert-manager).
Summary:

a. Install the custom resource definitions required for cert-manager
b. Activate the Jetstack Helm repository
c. Install the Cert-Manager package
d. Add a clusterissue for letsencrypt

install custom resource definitions

$ kubectl apply --validate=false -f https://raw.githubusercontent.com/jetstack/cert-
manager/release-0.14/deploy/manifests/00-crds.yaml

Add the Jetstack Helm repository

$ helm repo add jetstack https://charts.jetstack.io

Install the cert-manager helm chart

$ helm install cert-manager --version v0.14.0 jetstack/cert-manager

Install the letsencrypt ClusterIssuer (careful: needs customization!)

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/k8s.io/master/cert-
manager/letsencrypt-prod.yaml

7. Install Keycloak (WIP)

Add codecentric package source and update package sources.

$ helm repo add codecentric https://codecentric.github.io/helm-charts

$ helm repo update

https://letsencrypt.org/
https://tools.ietf.org/html/rfc8555)
https://cert-manager.io/
https://hub.helm.sh/charts/jetstack/cert-manager)

DARE-777413 Public D4.2

 Page | 10

Install Keycloak Helm Chart

$ helm install keycloak -f keycloak-values.yaml --version 8.0.0 codecentric/keycloak

iii. DARE platform installation

After having successfully executed the previous steps, the infrastructure should be ready in order
to install the dare-platform. The following instructions are related to the DARE components
deployment.

a. git clone https://gitlab.com/project-dare/dare-platform.git
b. Check out the latest release
c. cd dare-platform/k8s/ or cd dare-platform/k8s-operational

i. The yaml files in k8s directory are associated to the testbed while the k8s-
operational to the operational environments.

ii. In order to install the DARE platform in a different environment, the yaml files
should be adjusted accordingly

d. execute the script deploy.sh
e. Expose deployments:

i. kubectl expose deployment d4p-registry --type=NodePort --name=d4p-registry-
public

ii. kubectl expose deployment dare-login --type=NodePort --name=dare-login-public

iii. kubectl expose deployment exec-api --type=NodePort --name=exec-api-public

iv. kubectl expose deployment exec-registry --type=NodePort --name=exec-registry-
public

v. kubectl expose deployment playground --type=NodePort --name=playground-
public

vi. kubectl expose deployment semantic-data --type=NodePort --name=semantic-data-
public

vii. kubectl expose deployment workflow-registry --type=NodePort --name=workflow-
registry-public

f. If volumes are not mounted –> systemctl restart kubelet

The DARE platform supports the collaboration of the users and provides a JupyterHub component.
In order to deploy it, perform the following steps:

a. Create secret token for jupyterhub-config.yaml: openssl rand -hex 32
b. Copy the token and paste it in the aforementioned yaml file in the secretToken field
c. Run the following

i. helm repo add jupyterhub https://jupyterhub.github.io/helm-chart/

ii. helm repo update

iii. kubectl create namespace jupyterhub

iv. helm upgrade --install jupyterhub jupyterhub/jupyterhub --namespace jupyterhub -
-version=0.9.0 --values jupyterhub-config.yaml

https://gitlab.com/project-dare/dare-platform.git
https://gitlab.com/project-dare/dare-platform.git

DARE-777413 Public D4.2

 Page | 11

The latest version of the above installation instructions of the Kubernetes and DARE components
are always available online, in the DARE platform’s microsite15.

3. Summary

The DARE platform is a deployment cloud-native platform designed with the objective to be easily
installable and configurable automatically using Kubernetes. The components are updated to their
final stable versions. Keycloak service is integrated to the DARE platform for user authentication. It
is extended to also use 3rd party identity providers, thus enabling the integration with EGI Checkin
and other providers.

15 https://project-dare.gitlab.io/dare-platform/installation/

https://project-dare.gitlab.io/dare-platform/installation/

	1. Introduction
	○ 1.1 Purpose and scope
	○ 1.2 Relationship with other Work Packages and Deliverables
	○ 1.3 Methodology and Structure of the Deliverable

	2. DARE Big Data Analytics Components
	○ 2.1 Integrated DARE platform
	○ 2.2 DARE platform deployment
	i. Operating System specification and requirements
	ii. Kubernetes and general-purpose components installation
	iii. DARE platform installation

	3. Summary

