
DARE-777413 Public D4.4

31/07/2019 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

D4.4 Data-driven Abstraction Specification and
Execution Mapping Services Toolkit II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.4 Data-driven Abstraction Specification and Execution
Mapping Services Toolkit II

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.2, T4.4
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Malcolm Atkinson (UEDIN)

Contributor(s) Rosa Filgueira (UEDIN)

Reviewer(s) Stavros Sachtouris (GRNET)

Document description

The report accompanies the software deliverable for the
Abstraction Specification & Execution Mapping components
integrated in the DARE platform.
It provides a short description on the different components, their
role within the DARE platform and their current status of maturity.
It also provides links to relevant code and documentation.

DARE-777413 Public D4.4

31/07/2019 Page | 2

Document Revision History

Update Date Modifications Introduced
Modification Reason Modified by

1 7/12/2020 Copy of D3.6 as outline Malcolm Atkinson
(UEDIN)

2 16/10/2020 Report on dispel4py optimisation Rosa Filgueira (UEDIN)

3 16/12/2020 Editorial pass and insert of above Malcolm Atkinson
(UEDIN)

4 28/12/2020 Response to review Malcolm Atkinson
(UEDIN)

Executive Summary
This task is responsible for designing, implementing and iteratively enriching the execution mapping
services foreseen in DARE. The set of services will integrate the interfacing with different execution
platforms and frameworks, continuously supporting further processing assets, in accordance with
the priorities and needs posed by the user communities.
This deliverable outlines the data-driven abstraction specification DARE software components
produced by the extension and improvement of dispel4py and inclusion of CWL. These components
allow for the context-agnostic, abstract specifications of methods addressing data, computing and
complexity extremes.
New features were added to dispel4py to extend the support for distributed mappings and more
functionality as processing element implementations. Dynamic optimisation was introduced.
CWL was included within the framework.
The abstractions defined by dispel4py and CWL are exposed through the DARE API. The DARE API is
the entry point of DARE that provides access to the computational resources of the platform. A
library of Python functions is provided to help developers use the API.

DARE-777413 Public D4.4

31/07/2019 Page | 3

Table of Contents

1 Introduction 41.1
 Purpose and Scope 41.2
 Approach and relationship with other Work Packages and Deliverables 41.3
 Methodology and Structure of the Deliverable 42
 DARE Abstraction Specification and Execution Mapping Services 52.1
 Abstraction Specification Components 52.1.1
 CWL 52.1.2
 dispel4py 52.1.3
 PE Catalogue 52.1.4
 Extension of the PE library 62.2
 Execution Mapping Components 62.2.1
 Kubernetes 62.2.2
 SPECFEM3D 62.2.3
 Docker 62.2.4
 dispel4py mappings 72.2.4.1
 Mappings 72.2.4.2
 Dynamic optimisation of dispel4py 72.2.5
 Wider support of CWL 82.2.5.1
 Provenance 82.2.5.2
 Python 3 Error! Bookmark not defined.3
 Integration in DARE Platform 9
3.1 Execution API 83.2 Data services 84 Summary 95 Bibliography 9

DARE-777413 Public D4.4

31/07/2019 Page | 4

1 Introduction

1.1 Purpose and Scope
This task is responsible for designing, implementing and iteratively enriching the execution mapping
services foreseen in DARE. The set of services will integrate the interfacing with different execution
platforms and frameworks, continuously supporting further processing assets, in accordance with
the priorities and needs posed by the user communities.
This deliverable outlines the data-driven abstraction specification DARE software components
produced by the extension and improvement of dispel4py and the addition of CWL. These
components allow for the context-agnostic, abstract specifications of methods addressing data,
computing and complexity extremes.

1.2 Approach and relationship with other Work Packages and Deliverables
The architecture designed by work package 2 provides the blueprint for the DARE software
components and their interactions demonstrated by this deliverable.
The execution mapping services is informed by and provides input for the data lineage services in
WP3. The DARE API created in WP3 provides an abstract layer for communication with the execution
platform via the mapping services.
Work package 5 provides the testbed infrastructure with the Kubernetes1 cluster that hosts the API,
data services, user management, provenance services and the workflow catalogue which all interact
with the mapping services.
The design and implementation of the execution mapping services is driven by the priorities and
needs posed by the EPOS2 and IS-ENES3 use cases in work packages 6 and 7. In collaboration with
WP8, the execution mapping services were demonstrated in training events for each of the use case
communities of WP6 and WP7.

1.3 Methodology and Structure of the Deliverable
We describe the improvements to the abstract specification services in section 2. The integration in
the DARE platform is described in section 3. A summary can be found in section 4.

1 https://kubernetes.io/
2 EPOS European Plate Observing System https://www.epos-eu.org/
3 IS-ENES InfraStructure for the European Network for Earth System Modelling https://www.wur.nl/en/show/IS-
ENES-InfraStructure-for-the-European-Network-for-Earth-System-Modelling.htm

https://www.epos-eu.org/
https://www.wur.nl/en/show/IS-ENES-InfraStructure-for-the-European-Network-for-Earth-System-Modelling.htm
https://www.wur.nl/en/show/IS-ENES-InfraStructure-for-the-European-Network-for-Earth-System-Modelling.htm

DARE-777413 Public D4.4

31/07/2019 Page | 5

2 DARE Abstraction Specification and Execution Mapping Services

2.1 Abstraction Specification Components
The data-driven abstraction specification DARE software components are produced by the
extension and improvement of dispel4py. These components will allow for the context-agnostic,
abstract specifications of methods addressing data, computing and complexity extremes.

2.1.1 CWL
The Common Workflow Language (CWL)4 orchestrates the top-level workflows and provides an
abstraction for task-based workflows across multiple platforms. The CWL W3C proposal is widely
used by research communities as an abstraction of workflow descriptions. It enables portability and
reproducibility. CWL comes with rich support for the production of provenance traces.

In existing implementations of the DARE use case scenarios, the workflow steps were combined in
a bash script with poor portability between platforms. To address this issue, CWL is used for abstract
specifications by WP6 and WP7 to organise execution of ensembles of computationally demanding
simulation code. These tools will make it easier for DARE to interoperate and integrate with other
communities in addition to the DARE user communities. The provenance gathering has been
extended to include provenance output from CWL seamlessly.

2.1.2 dispel4py
DARE dispel4py5 is responsible for the abstraction within each task of a CWL workflow to provide a
mapping to a parallel platform, such as a mapping to Message Passing Interface (MPI) for distributed
memory clusters, and a mapping taking advantage of Python multiprocessing for shared memory
systems. The dispel4py workflow system scales to large environments by exploiting fine-grained
data parallelism.

dispel4py runs in containers managed by Kubernetes and controlled using CWL as well as in directly
controlled contexts, such as a user’s laptop. CWL manages file-processing tasks. In contrast,
dispel4py works at a more fine-grained level. Its main concept is data streaming and computation
is described using data processing elements (PE) that are coordinated by the data flowing as ordered
streams of data units between them. Each PE can consume data-units from each input stream and
generate data units on each output stream at rates determined by its embedded logic, e.g., a
transformation may be applied to each unit resulting in an output, whereas a sum would need to
consume all input units before emitting a single output data unit. A rolling average, would consume
the set span of samples before emitting its stream of data units.

2.1.3 PE Catalogue
The specified DARE software components and workflows are stored in the dispel4py or CWL
registry. The registry stores complete workflows as well as individual PEs and their descriptions.
These can be imported by third parties as and when required. The registry is collecting a rich library
of PEs produced by the implementations and extensions of the use cases. The implementation6 was
originally developed as part of the VERCE project7 [Atkinson et al. 2015].

4 https://www.commonwl.org
5 https://gitlab.com/project-dare/dispel4py/tree/master
6 https://gitlab.com/project-dare/d4py-registry

7 http://www.verce.eu

https://www.commonwl.org/
https://gitlab.com/project-dare/dispel4py/tree/master
https://gitlab.com/project-dare/d4py-registry
http://www.verce.eu/

DARE-777413 Public D4.4

31/07/2019 Page | 6

2.1.4 Extension of the PE library
There are three groups of PE library extensions i.e., general-purpose algorithms, and two specialised
collections serving the needs of seismologists in EPOS and the needs of climate modelers in IS-ENES.

General PEs: These PEs are not domain specific and will be applied in many scenarios:

● Match or Join: this PE pairs up input data from two input streams, matching data items
according to a join condition

For the EPOS rapid assessment (RA) use case the PE library was extended with several new
processing element implementations:

● ReadStream: Create a stream of real and synthetic input data from miniseed formatted
files with matching time windows

● Norm: a preprocessing step that calculates the norm of the input streams
● Calculate peak ground motion
● Visualisation: plot maps to visualise the peak ground motion parameters
● Produce GeoJSON to enable integration with other geo-referencing tools

RA makes use of the Match PE: after the preprocessing pipeline of the synthetic and the real input
datasets, this PE pairs up real and synthetic traces from the same station and with the same time
window.

For the IS-ENES climate use case the following PE was created:
● icclim function: this PE applies the icclim8 function icclim.indice() which is parameterised

at the creation of the workflow.

2.2 Execution Mapping Components
The execution mapping interprets the abstract data flow created by a user to create a concrete
enactment environment and to orchestrate the data processing.

2.2.1 Kubernetes
Kubernetes provides and manages the enactment platform, provided by WP5 (See §3.1). It also
orchestrates the MPI execution and, in the future, the Apache Spark execution.

2.2.2 SPECFEM3D
The software package SPECFEM3D Cartesian9 simulates seismic wave propagation at the local or
regional scale and performs full waveform imaging (FWI) or adjoint tomography based upon the
spectral-element method (SEM). It is a parallel application for HPC environments with distributed
memory and MPI. To make this application available in the DARE cloud environment, a docker10
image and a docker-compose configuration was created to create a cluster with MPI and
SPECFEM3D. This docker configuration provides the complete environment for deploying
SPECFEM3D to the DARE testbed. Coupled with the DARE API this component performs simulations
in a Kubernetes distributed compute cluster on demand. The synthetic data created in these
simulations form the input for the seismology rapid assessment use case.

2.2.3 Docker
A docker file is provided for each of the use cases (WP6&7) to deliver a standard and familiar
environment for domain users combined with the dispel4py client toolkit. In the case of WP6

8 https://icclim.readthedocs.io/en/latest/

9 https://specfem3d.readthedocs.io/en/latest/
10 https://www.docker.com/

https://icclim.readthedocs.io/en/latest/
https://specfem3d.readthedocs.io/en/latest/

DARE-777413 Public D4.4

31/07/2019 Page | 7

(seismology) this image contains the latest obspy release11, for WP7 (climatology) the icclim toolkit12
is included.
dispel4py MPI Docker containers are deployed to Kubernetes to create MPI clusters on demand.

2.2.4 dispel4py mappings
This section describes the new features that were added to the dispel4py execution engine to
support the use case requirements. These have been developed substantially, to include dynamic
optimisation.

2.2.4.1 Mappings
A prototype mapping for dispel4py explores the feasibility of Kafka13 as the distributed queue
engine in combination with Docker containers that wrap PEs and their dependencies. The Kafka
mapping is suitable for distributed memory environments (e.g. High Performance Computing (HPC)
clusters) and represents an alternative to the MPI mapping. Since Kafka has been designed to take
into account the needs of data-streaming applications (e.g. scalability, reliability), our aim is to
create dispel4py workflows using Kafka query engine and compare the performance with the MPI
mapping using the Kubernetes infrastructure.

2.2.4.2 Dynamic optimisation of dispel4py
A new dynamic optimisation mechanism has been developed and tested on a variety of workflows.
This was reported at this year’s WORKS conference [Liang et al. 2020]. This provides new
optimisation where the deployment and replication of PEs is increased in response to load, thereby
developing the potential to respond to data-dependent loads and variations in platform
performance. The data-streams exploit a different service, mqz, and the adaptive algorithms are
parameterised from previous monitoring runs of the same workflow. In due course, those
parameters may be mined from provenance records.

The relevant open-source version of dispel4py is available in the DARE code repository in a new
experimental branch: https://gitlab.com/project-dare/dispel4py/-/tree/experimental. It provides
two new mappings14 for the dynamic deployment of dispel4py workflows: using zmq
library (zmq_multi.py) and the multiprocessing library (dynamic.py). These deliver two
optimisation techniques15 for the static deployment of dispel4py workflows: Naïve Assignment
(naive_partition.py), and Staging (stage.py). These have been tested and validated by optimisation
experiments conducted in conjunction with WP616. These experiments use the Rapid Assessment
(RA) workflow, combining all of the stages, a seismic cross-correlation workflow, legacy of the VERCE
project, and standard examples from astrophysics and window-joins. Readers are advised to read
detailed descriptions17 before using these new dispel4py mechanisms. These notes contain three
sections: (1) the current “mini-workflows” for the RA use case, (2) the corresponding integrated
workflows (one per phase) for the RA use case, and (3) the semi-stream workflows for the RA use
case, used in the optimisation experiments.

11 https://docs.obspy.org/index.html
12 https://icclim.readthedocs.io/en/latest/
13 https://kafka.apache.org/
14 https://gitlab.com/project-dare/dispel4py/-/tree/experimental/dispel4py/new
15 https://gitlab.com/project-dare/dispel4py/-/tree/experimental/dispel4py/optimization
16https://gitlab.com/project-dare/WP6_EPOS/-
/tree/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS
17https://gitlab.com/project-dare/WP6_EPOS/-
/blob/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS/README.md

https://gitlab.com/project-dare/dispel4py/-/tree/experimental
https://docs.obspy.org/index.html
https://icclim.readthedocs.io/en/latest/
https://kafka.apache.org/
https://gitlab.com/project-dare/dispel4py/-/tree/experimental/dispel4py/new
https://gitlab.com/project-dare/dispel4py/-/tree/experimental/dispel4py/optimization
https://gitlab.com/project-dare/WP6_EPOS/-/tree/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS
https://gitlab.com/project-dare/WP6_EPOS/-/tree/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS
https://gitlab.com/project-dare/WP6_EPOS/-/blob/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS/README.md
https://gitlab.com/project-dare/WP6_EPOS/-/blob/optimization_experiments/processing_elements/OPTIMIZATIONS_EXPERIMENTS/README.md

DARE-777413 Public D4.4

31/07/2019 Page | 8

These experiments revealed issues with the current RA workflows. The first mini-workflow
(create_download_json.py) and the last PE of the last mini-workflow (dispel4pyRAMapping.py) have
an incompatibility with the Multiprocessing library: create_download_json.py uses requests.get for
downloading the synthetic data that is incompatible with the Multiprocessing library, and
dispel4pyRAMapping.py uses plt.subplots that is not compatible with the Multiprocessing library.
The work-around is the 3rd version (semi-stream workflows. The total stream workflows can be run
using the simple/sequential mapping.

2.2.5 Wider support of CWL
CWL is being used as an intermediary language between the client specification of a dataflow and
the service executing the dataflow. A first prototype shows how a dispel4py workflow can be
translated to CWL, opening the door to interoperability with other workflow engines that support
CWL. Adding a CWL interface to dispel4py supports clients that use CWL to describe their workflows.
Combining this with dispel4py streaming features creates a rich environment for data intensive use
cases.

2.2.5.1 Provenance
dispel4py with provenance automatically generates the provenance wrappers for a dispel4py
workflow, specified by the user as a command line parameter when executing dispel4py on the
target platform.

2.3 Execution API
The DARE Execution API enables the distributed and scalable execution of DARE components via a
HTTP interface that provides access to DARE execution services in a language-independent fashion,
thereby separating the client environment from the DARE execution platform. The relevant source
code and documentation can be accessed via the project’s GitLab repository18.
The current release of the DARE API supports the execution and monitoring of distributed
SPECFEM3D simulations and dispel4py workflows on a Kubernetes cluster that is created and
removed on-demand. The API implementation is designed to extend to other execution contexts in
later releases.
Through the role-based access, the control execution API accesses the Kubernetes API to spawn
container clusters on demand, while at the same time enabling shared file system access with itself
and the execution contexts and monitoring the status of executed jobs. All execution contexts are
built to use Common Workflow Language (CWL) which allows for dynamically parameterized
executions.
In addition, the execution API offers services such as uploading/downloading and referencing of
data and process monitoring.
A brief overview of the API’s functionality can be found at the relevant wiki page of the project19.

2.4 Data services
The data referencing as well as the uploading and downloading data for stage-in or stage-out in the
context of a workflow execution are available within the services of the DARE platform as a shared
file system. In addition, the workflows can use the EUDAT B2DROP20 service for sharing data.
In this phase, we show how this service is being exploited for the climate use case. It is planned to
be used in the next phase also for the EPOS use case.

18 https://gitlab.com/project-dare/dare-api
19 https://gitlab.com/project-dare/dare-api/wikis/Execution-API-brief-documentation

20 https://eudat.eu/services/b2drop

https://gitlab.com/project-dare/dare-api
https://gitlab.com/project-dare/dare-api/wikis/Execution-API-brief-documentation
https://eudat.eu/services/b2drop

DARE-777413 Public D4.4

31/07/2019 Page | 9

3 Summary
The new interfaces that we are building on DARE provide a fluent path from prototyping to
production. Applications are not locked to platforms but can be moved to suitable new platforms
without human intervention and with the encoded method’s semantics unchanged. In the future
we will start the integration of an EOSC-Friendly AAI for the DARE platform, create improvements
of the semantic catalogues and the DARE Knowledge Base (DKB), along with the DARE workflow
optimiser.
In this iteration, important new features were added to the dispel4py library and the execution
mappings to support the DARE use cases and enable necessary abstractions for the next stage, in
which we will enrich the execution mapping services to optimise workflow executions. The
optimiser will use the provenance services to assess past performance; annotated PE descriptions
in the catalogue will inform deployment and distribution of workflows and components; extensions
to the DARE API will be integrated by the mapper.

4 Bibliography
[Atkinson et al. 2015] Atkinson M.P., Carpené M., Casarotti E., Claus S., Filgueira, R., Frank A., Galea M., Garth T.,
Gemünd A., Igel H., Klampanos I.A., Krause A., Krischer L., Leong S.H., Magnoni F., Matser J., Michelini A., Rietbrock A.,
Schwichtenberg H., Spinuso A., and Vilotte J-P., VERCE delivers a productive e-Science environment for seismology
research, in Proceedings of IEEE eScience 2015.

[Liang et al. 2020] Liang Liang, Filgueria Rosa and Yan Yan, Adaptive Optimizations for Stream-based Workflows, in
proceedings WORKS 2020, Oct. 2020.

	1 Introduction
	1.1 Purpose and Scope
	1.2 Approach and relationship with other Work Packages and Deliverables
	1.3 Methodology and Structure of the Deliverable

	2 DARE Abstraction Specification and Execution Mapping Services
	2.1 Abstraction Specification Components
	2.1.1 CWL
	2.1.2 dispel4py
	2.1.3 PE Catalogue
	2.1.4 Extension of the PE library

	2.2 Execution Mapping Components
	2.2.1 Kubernetes
	2.2.2 SPECFEM3D
	2.2.3 Docker
	2.2.4 dispel4py mappings
	2.2.4.1 Mappings
	2.2.4.2 Dynamic optimisation of dispel4py

	2.2.5 Wider support of CWL
	2.2.5.1 Provenance

	2.3 Execution API
	2.4 Data services

	3 Summary
	4 Bibliography

