
DARE-777413 Public D4.6

24/06/2019 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures”

D4.6 Data Consolidation and Linking Toolkit II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D4.6 Data Consolidation and Linking Toolkit II

Work package WP4: Big Data Processing and Analytics

Tasks involved T4.3
Type DEM: Demonstrator, pilot, prototype

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Antonis Lempesis (ATHENA)

Contributor(s) Antonis Lempesis (ATHENA)

Reviewer(s)

Document description

The report accompanies the software deliverable for the Data
Consolidation and Linking components integrated in the DARE
platform.
It provides a short description on the different components, their role
within the DARE platform and their current status of maturity. It also
provides links to relevant code and documentation.

DARE-777413 Public D4.5

24/06/2019 Page | 2

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

1 24/12/2020 Initial version A. Lempesis (ATHENA)
2 30/12/2020 Final A. Lempesis (ATHENA)

DARE-777413 Public D4.5

24/06/2019 Page | 3

Executive Summary

The document summarizes the activities carried out under T4.3, Data Consolidation and Linking
Toolkit, of the project. During the first period of the project, the task laid the foundation for enabling
the DARE platform to handle heterogeneous and disparate voluminous data sources. Following the
general architectural principles and integration paradigm adopted by DARE, the relevant
components were packaged, exposed and integrated in the DARE platform. Furthermore, the
semantic representation required for enabling the exploitation of linked data within the platform
has been based on established standards in order to facilitate future extensions and the reach of
the platform in terms of easily incorporating different data sources.

Table of Contents

1 Introduction 4

1.1 Purpose and Scope 4

1.2 Approach and relationship with other Work Packages and Deliverables 4

1.3 Methodology and Structure of the Deliverable 4

2 DARE Data Consolidation and Linking Toolkit 4

2.1 DARE Data Catalogue 4
2.1.1 Catalogue Design 4

2.2 Exareme 5
2.2.1 Modifications to Exareme in the context of DARE 5

2.3 Deployment Testbed 7
2.3.1 IS-ENES/Climate4Impact Use Case 7
2.3.2 EPOS Use Case 7

3 Integration in DARE Platform 8
3.1.1 Data Catalogue API 8
3.1.2 Exareme communication with other components 8

4 8

List of Terms and Abbreviations

Abbreviation Definition
UDF User Defined Function
SQL Structured Query Language

DARE-777413 Public D4.5

24/06/2019 Page | 4

1 Introduction

1.1 Purpose and Scope
The present document accompanies the software components that comprise deliverable D4.6, Data
Consolidation & Linking Toolkit IΙ, of the project.
It provides an overview of the design of the DARE Data Catalogue, part of the DARE Knowledge Base,
and provides information on its technical realization at the current stage of the project.
Additionally, it summarizes the work performed on the Exareme component during the second
period of the project and reports on the design and API of the semantic registries used by the DARE
platform. Since this is the second version of the deliverable (D4.5 being the first version), it was
decided that the contents of D4.5 will remain and the progress during the second period of the
project will be added. In the first version of the report emphasis was given on the initial design and
initial implementation rather than performance. In the second version, we describe new
developments in terms of functionality but also address performance issues that arised.

1.2 Approach and relationship with other Work Packages and Deliverables
Data Consolidation and Linking components are used to support the two use cases of the project:
EPOS and IS-ENES/Climate4Impact. As such, it is directly related to WP6 and WP7 and more
specifically D6.1 and D7.1. Moreover, in the case of Exareme, a general-purpose tool designed to be
directly invoked by dispel4py, it is related to D4.3. Additionally, the design of the Data catalogue
semantic registries is based on work related to the DARE Semantic registries on WP2, while the
implementation of the relevant APIs relates to work on the SemaGrow component, part of D4.1, Big
Data Analytics Toolkit.

1.3 Methodology and Structure of the Deliverable
The structure of this deliverable is as follows. In the first section a brief description of the design of
the DARE Data Catalogue is presented. Additionally, the section provides a high-level description of
Exareme. It also presents its components, the modifications and enhancements to it in order to
support the two use cases and, finally the Exareme method that was used and tested in the two use
cases.
The second section describes the means of integration of the Data Consolidation and Linking
components within the DARE platform.

2 DARE Data Consolidation and Linking Toolkit

2.1 DARE Data Catalogue

2.1.1 Catalogue Design
The DARE catalogue constitutes the functional implementation of the Dare Knowledge Base,
focusing at the present stage on the interfacing with the enactment system. It is logically divided in
three catalogues, handling Processing Elements (PEs), Components, and Data respectively,
corresponding to three concepts in the dare:context.
The Data Catalogue in particular acts as a metadata registry for the datasets used and produced by
the users. Conceptually, we can distinguish between descriptive and functional characteristics of
the datasets.
The former includes information on the owner and creator of the dataset (at the personal and
organizational levels), define relevant topics and themes and provide links to other assets, e.g.,
other datasets or publications. Such information is expected to be used for discovery and linking.

DARE-777413 Public D4.5

24/06/2019 Page | 5

The latter are more closely associated with the operation of the platform as they specify access
rights, the type and location of the file(s) included in the dataset, as well as temporal and spatial
information for the equipment and/or process that produced the dataset.
The data catalogue uses concepts defined by the DCAT W3C Recommendation1. Hence, datasets
described within the catalogue are conceptualized as instances of the dare:Dataset class, a subclass
of dcat:Dataset. Additional properties for associating a dataset with the overall operation of the
DARE platform (i.e. the dataset's creator/contributor and the processes within the platform that led
to the creation of the dataset) are included in the catalogue's schema. Taking into account the work
on EPOS-DCAT, further concepts for scientific equipment (dare:Equipment) and facilities
(dare:Facility) are defined, as generalizations of epos:Equipment and epos:Facility concepts.

2.2 Exareme

Exareme is a distributed and federated processing engine that provides a declarative language to
define dataflows. Exareme’s algorithms are written in SQL with several Python extensions.
Exareme’s functionality is based on two different types of nodes:

● Master. Exareme’s master node is providing the REST API, receives requests, submits jobs to the
workers and returns the responses to the clients.

● Worker. Exareme’s worker is the execution engine which receives jobs from the master node,
processes the data and returns the results.

2.2.1 Modifications to Exareme

In order to support the IS-ENES/Climate4Impact use case a number of significant changes have been
made to the Exareme and new functionality has been added.

Automated Support of federated (local/global) execution.

In its initial state, Exareme was strictly a distributed execution engine. This meant that the master
node was responsible for accessing the data to be processed and distributing it to the worker nodes.
However, in the Climate4Impact use case the data is already stored in multiple data nodes. To better
support the use case, Exareme was modified to separately process the datasets in a local step (in
the best case, one worker node per data node but more than one data nodes can be assigned to a
worker node, if the computing resources are not enough) and then receive the results in its master
node and merge/aggregate them in a final global step.

In essence, Exareme has evolved to also function as a federated query and processing engine, able
to process different datasets with potentially different code in each worker node and merge the
results as a final step in the master node. Of course, for more complex use cases, nothing prohibits
Exareme from working in a “hybrid” mode where the results of the federated execution are further
processed in a distributed manner, by taking advantage of the worker nodes.

Support of Python scripts.

Exareme’s processing processing power as a distributed query engine was supported by a large
number of user defined functions (UDF) that allowed its users to manipulate and analyze the data
using pure SQL. However, in order to support the Climate4Impact use case, Exareme was modified
to support the direct execution of Python scripts. This was deemed necessary because the code

1 https://www.w3.org/TR/vocab-dcat/

https://www.w3.org/TR/vocab-dcat/

DARE-777413 Public D4.5

24/06/2019 Page | 6

from ENES was already developed (in Python) and it would require too much effort to rewrite using
the Exareme UDFs and SQL.

Deployment

Exareme is deployed and runs as a service (as opposed to other processing elements that are
executed on demand and are shut down when the particular computations have been completed).
It receives queries and returns the results through a RESTful API on the master node. The worker
nodes are statically deployed (their number and location is determined when the DARE platform is
deployed) but this is planned to change in the future.

During the second period of the project the development on Exareme continued by adding extra
features and addressing performance issues. More specifically, the following features were added:

Iterative local/global execution

In the first version of the federated execution mode of Exareme, only one round local and then
global execution was available. This means that processing was performed in the worker nodes with
locally located data (“local” step), the results were returned to the master node and the final step
of the computation took place there (“global” step). This mode of operation was enough for some
cases but there are algorithms that require that the local/global mode should be repeated. This
feature was implemented and now Exareme is able to perform iterations of local/global
computations, which terminate when a user defined condition is met (e.g. a fixed amount of
iterations has been performed or the result has converged).

Predefined Algorithms

A large number of algorithms has been implemented and are available out of the box for all Exareme
users. Some of them are Machine Learning oriented but the majority is general purpose. An
indicative list of the implemented algorithms includes:

● k-fold cross validation
● CART
● Hold-out validation
● Kaplan-Meier Estimator
● Logistic Regression
● Naive Bayes Training
● Pearson Correlation
● Iterative Dichotomiser 3 (ID3)
● Descriptive Statistics
● Calibration Belt
● ANOVA

For a complete list of the implemented algorithms, see https://gitlab.com/project-dare/ExaSpark/-
/tree/master/Exareme-Docker/src/mip-algorithms.

Kubernetes

A major shortcoming of Exareme during the first phase of the project was its inability to be deployed
using Kubernetes. Instead, Exareme could only be installed as a standalone service or using Docker
swarm, an orchestration platform that is competing and incompatible to Kubernetes, that is used
by the rest of the DARE platform. In the second period of the project, this shortcoming was

https://gitlab.com/project-dare/ExaSpark/-/tree/master/Exareme-Docker/src/mip-algorithms
https://gitlab.com/project-dare/ExaSpark/-/tree/master/Exareme-Docker/src/mip-algorithms

DARE-777413 Public D4.5

24/06/2019 Page | 7

addressed: Exareme can now be deployed using Kubernetes, thus making the DARE platform more
uniform and much easier to install and maintain.

Optimizations

Apart from the new features that were implemented in the second period of the project, one very
significant performance enhancement was introduced. In previous versions of Exareme, the worker
nodes were launched whenever a new task was to be executed. This resulted in long startup times
that, especially for short lived tasks, could amount up to 90% of the total runtime. In the latest
version of Exareme, the worker nodes are launched as services that incur the startup cost only once
and then wait for jobs to execute. This change not only greatly improves the performance of
Exareme (by also allowing for the caching of tasks and their results), but also enables the creation
of stateful UDFs or Python scripts.

The Exareme code is hosted in the DARE GitLab server and can be accessed in
https://gitlab.com/project-dare/ExaSpark

2.3 Deployment Testbed

2.3.1 IS-ENES/Climate4Impact Use Case
For the Climate4Impact use case the need existed for efficient processing of large amounts of data,
coming from multiple data nodes. In this case, the federated processing capabilities of Exareme are
suitable for the implementation of the use case.
Exareme has been tested with Python code and sample NetCDF datasets. Specifically, the Python
code that we ran with Exareme is based on Python’s library icclim2 which processed NetCDF files.
The test took place on 3 NetCDF files which were stored across three Exareme worker nodes.
Python’s script processed locally the datasets and the results were returned to the Exareme’s
master node. Exareme’s compression did not enhance the execution since NetCDF is already a
compressed representation format.

2.3.2 EPOS Use Case
For the EPOS use case, the distributed or federated functionality of Exareme was not needed.
Instead, since in this use case very large files must be copied over the network from their storage to
the DARE platform, it was decided to evaluate whether Exareme’s compression algorithm could be
used to reduce the size of the data.
Exareme’s compression for tabular data was tested with a sample MSEED file. The data were saved
in 100HZ, which is the most commonly used rate. The duration of the time series was about 105
minutes. The tests showed that there was no compression benefit since MSEED files are already
very efficiently compressed.
As a result, it was decided that Exareme will not be used in the EPOS use case, since it would not
offer any real benefits.

2 https://icclim.readthedocs.io/en/latest/

https://gitlab.com/project-dare/ExaSpark
https://icclim.readthedocs.io/en/latest/

DARE-777413 Public D4.5

24/06/2019 Page | 8

3 Integration in DARE Platform

3.1.1 Data Catalogue API
The Data Catalogue define an LDP-compliant API for submitting and retrieving information to the
underlying graph database.
The triple store used is a Virtuoso database, packaged and deployed in accordance to the BDI
paradigm, and including additional libraries for using the Jena API in order to handle RDF data.
At the moment, the API exposes two RESTful calls:
listdatasets: It returns a list of the datasets accessible to the user corresponding to the user token
provided as input to the call.
submitdataset: records information on a new dataset imported to the platform. The information
includes (and is given as parameter to the REST call):

- The user submitting the dataset (and specifically her user token).
- A name and description for the dataset
- The component that produced the dataset
- The process that generated the dataset
- The workflow that was executed for producing the dataset
- The date of submission
- The path on the distributed file system accessible to the platform where the dataset can be

found
The implementation of the API can be found at: https://gitlab.com/project-dare/data-catalogue

3.1.2 Exareme communication with other components
dispel4py/Exareme communication. Disple4py submits a job using Exareme’s RESTful API. The
parameters include the Python’s script that will run and the selected datasets. Exareme’s response
contains a complex JSON file that includes one result for each dataset.
Exareme Processing. Exareme’s master receives the request and runs the algorithm in parallel
across all the local/worker nodes. Then the local nodes return their result to the master. Exareme
master merges the local results. Possible further global aggregation is a second step of a dispel4py
workflow. This design allows Exareme to return all the local results with information about the local
datasets so that provenance is available through all the intermediate steps of the federated
algorithm.
Provenance Support. When Exareme executes a local step, it returns the local result with several
information required to support provenance (i.e., the data node it ran, version of data etc.). These
intermediate local results are expressed in JSON. Then, Exareme’s master node combines these
multiple local JSON results in one bigger JSON. This JSON file is returned to dispel4py.

https://gitlab.com/project-dare/data-catalogue

	1 Introduction
	1.1 Purpose and Scope
	1.2 Approach and relationship with other Work Packages and Deliverables
	1.3 Methodology and Structure of the Deliverable

	2 DARE Data Consolidation and Linking Toolkit
	2.1 DARE Data Catalogue
	2.1.1 Catalogue Design

	2.2 Exareme
	2.2.1 Modifications to Exareme

	2.3 Deployment Testbed
	2.3.1 IS-ENES/Climate4Impact Use Case
	2.3.2 EPOS Use Case

	3 Integration in DARE Platform
	3.1.1 Data Catalogue API
	3.1.2 Exareme communication with other components

