
DARE-777413 Public  D4.8 

  Page | 1  

 
 

H2020-EINFRA-2017  
EINFRA-21-2017 - Platform-driven e-infrastructure innovation 

DARE [777413] “Delivering Agile Research Excellence on European e-
Infrastructures” 

 

 

D4.8 Integrated Software Stack & Semantic 
Registry II 

 
Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017 

Deliverable D4.8 Integrated Software Stack & Semantic Registry II 

Work package WP4: Big Data Processing and Analytics 

Tasks involved T4.5 
Type DEM: Demonstrator, pilot, prototype 

Dissemination Level PU = Public 

Due Date 31/12/2020 

Submission Date 30/12/2020 

Status  Draft 

Editor(s) Sissy Themeli (NCSR-D), Iraklis Klampanos (NCSR-D) 

Contributor(s)  

Reviewer(s) KIT 

Document description 

This report accompanies the software deliverable of the 
Integrated Software Stack  built in the framework of the DARE 
project. It provides a short description of the rationale and 
integration status while it indicates links with the work performed 
at other technical and architectural packages. In addition, it 
includes links to relevant code and documentation. 



DARE-777413 Public  D4.8 

  Page | 2  

Document Revision History 
 

Version Date Modifications Introduced 
Modification Reason Modified by 

1 09/09/2020 Initial version Sissy Themeli (NCSR-D) 
2 1/12/2020 Additions on registries and 

modifications throughout 
Iraklis Klampanos 

(NCSR-D) 
3 30/12/2020 Final version Iraklis Klampanos 

(NCSR-D) 
    
    
    

 



DARE-777413 Public  D4.8 

  Page | 3  

Executive Summary 
The document serves as a summary of the technical developments towards the final DARE 
integrated platform. Reported results span across all tasks of WP4, Big Data Processing and 
Analytics, where most of the technical work on individual constituents of the platform is carried out. 
It also refers to results obtained from WP3, Large-scale Lineage and Process Management, mainly 
pertaining to the incorporation of provenance into the platform and the establishment of API 
mechanisms for its various parts. Finally, the report specifies the relationship and conformance of 
the platform to the architectural design envisioned in the proposed DARE solution. 
 



DARE-777413 Public  D4.8 

  Page | 4  

Table of Contents  
 

1 Introduction 5 

1.1 Purpose and Scope 5 

1.2 Relationship with other Work Packages and Deliverables 5 

1.3 Methodology and Structure of the Deliverable 5 

2 DARE Software Stack & Components 6 

2.1 Core DARE Components 6 
2.1.1 dispel4py 6 
2.1.2 s-ProvFlow 6 
2.1.3 d4py-registry 6 
2.1.4 CWL workflow registry 7 
2.1.5 DARE deployment configuration (extending Big Data Integrator) 7 
2.1.6 DARE Execution API 7 

2.2 Supporting DARE Components 7 
2.2.1 Playground 7 
2.2.2 MySQL 7 
2.2.3 MongoDB 7 
2.2.4 Virtuoso 7 
2.2.5 SemaGrow 8 
2.2.6 ExaSpark 8 

2.3 Deployment Testbed 8 
2.3.1 Operational Deployment 8 

3 DARE Registries 10 

3.1 DARE disel4py information registry 10 

3.2 DARE CWL registry 10 

3.3 Data Ontology 10 

3.4 Semantic data catalogue and search 11 

4 Summary 11 

5 References 11 

 

List of Terms and Abbreviations 
Abbreviation Definition 
WaaS Workflows-as-a-Service 
DKB DARE Knowledge-base 
P4 Protected Pervasive Persistent Provenance 
GDBMS Graph Database Management System 
SQL Structured Query Language 
RDF Resource Description Framework 
PE Processing Element 
API Application Program Interface 
FOAF Friend-Of-A-Friend ontology 
DCAT Data Catalogue vocabulary 



DARE-777413 Public  D4.8 

  Page | 5  

1 Introduction 
As an update to deliverable D4.7 ‘Integrated Software Stack and Semantic Registry I’ this document 
serves as an incremental summary of the technical developments leading to the implementation of 
the final DARE integrated platform – i.e., the complete DARE platform. Reported results span across 
all tasks of WP4, Big Data Processing and Analytics, where most of the technical work for individual 
constituents of the platform has been carried out. This report also refers to the results obtained 
from WP3, Large-scale Lineage and Process Management, mainly pertaining to the incorporation of 
provenance into the platform and the establishment of API mechanisms for its various parts. The 
integration process has been designed to set relatively low barriers and limits for integrating 
additional components and/or external resources. This design has made the integrated platform 
extensible to different scientific/user communities and adaptable to future evolutions in data 
science and e-infrastructure technologies. 

1.1 Purpose and Scope 
The purpose of this report is to provide a final account of the DARE platform in combination with 
the software delivered. It provides links to relevant code repositories and documentation, places 
the rationale for creating the Integrated Stack under the general approach of DARE and indicates 
the plan for evolving the platform. 

1.2 Relationship with other Work Packages and Deliverables 
The integrated software stack realised as the DARE platform is collectively one of the main technical 
outcomes of the DARE project as it implements the DARE architecture of WP2. Furthermore, it 
serves as the basis for technical improvements as well as for implementing the DARE use-cases of 
WPs 6 and 7. It constitutes an asset to be further developed and exploited by the DARE partners as 
described in deliverable D8.6 ‘Sustainability, 
Exploitation and Commercialisation Plan’. 

1.3 Methodology and Structure of the Deliverable 
This report accompanies a software deliverable comprising the components incorporated in the 
DARE platform in accordance to the DARE architectural principles and the project goals. 
 
Section 2 presents a high-level technical overview and summarises the components included in the 
first deployment of the DARE software stack. Section 3 presents the high-level ontologies designed 
for describing the respective components, as well as a preliminary implementation of the ontology 
used to describe data assets handled by DARE. Finally, Section 4 summarises the work described in 
this report. 
 



DARE-777413 Public  D4.8 

  Page | 6  

2 DARE Software Stack and Components 
This section describes the current set of components integrated in the DARE platform. We 
distinguish between core components - which are implementations of the major architectural 
elements of DARE as described in deliverable D2.2 ‘DARE Architecture and Technical Positioning II’ - and 
supporting components - that encapsulate required functionalities towards a functioning platform 
- which also holds since the first version of this deliverable, i.e., D4.7 ‘Integrated software Stack and 
Semantic Registry I’. The latest stable version of the platform is also described in [1]. 
 

 
Figure 1: High-level DARE Architecture1  

 
The DARE platform implements the DKB as a set of decoupled registries/stores: two separate 
workflow registries. Each of these exposes APIs for other components to interact with, following a 
microservices design2. The provenance store P4 is similar in the way it is implemented as a 
microservice. 
WaaS drives interactions with the DKB and P4, for example obtaining components and workflow 
implementations to execute, information about the environment or providing information to the 
provenance system. It is worth noting that the Kubernetes3 registries may also be interrogated by 
other DARE subsystems, therefore effectively being part of the DKB.  

2.1 Core DARE Components 

2.1.1 dispel4py 
dispel4py acts as the current implementer of the WaaS concept in the DARE architecture. It is used 
to describe abstract workflows and enact them over diverse underlying infrastructures taking care 
of the distribution of the execution, its optimisation and the orchestration of the different 
components involved in the execution. The repository hosting the latest implementation of 
dispel4py is accessible at: 
https://gitlab.com/project-dare/dispel4py. 

2.1.2 s-ProvFlow 
This component realises the P4 component of DARE that is responsible for collecting, preserving 
and reporting on provenance information from the workflow execution over the platform. Details 
on its functionality may be found at: https://gitlab.com/project-dare/s-ProvFlow.  

2.1.3 d4py-registry 
Through d4py-registry one can find a set of resources that include connections, function 
implementations, function parameters, groups, literals, PE implementations, user groups, users and 
workspaces, and a list of possible actions to apply on the resources. The interface is documented in 

                                                      
1 D2.2 ‘DARE Architecture and Technical Positioning II’ 
2 https://en.wikipedia.org/wiki/Microservices  
3 https://kubernetes.io/ 

https://gitlab.com/project-dare/dispel4py
https://gitlab.com/project-dare/s-ProvFlow
https://en.wikipedia.org/wiki/Microservices


DARE-777413 Public  D4.8 

  Page | 7  

order to ease the user experience while the implementation  is stored at: 
https://gitlab.com/project-dare/d4py-registry.  

2.1.4 CWL workflow registry 
This component is used to register CWL workflows and relevant execution environments to enable 
the execution of CWL workflows. It uses a MySQL database in the backend and exposes its 
functionality via a RESTful API. The component is containerized and may be deployed using the 
relevant specification files provided in the dare-platform repository. The CWL Workflow Registry 
repository is available at: https://gitlab.com/project-dare/workflow-registry  

2.1.5 DARE deployment configuration (extending Big Data Integrator) 
The DARE platform is a customised, cloud-ready and modular integrator platform, bringing together 
commercial and research, production-ready components for big data analytics. It offers an easy-to-
deploy, easy-to-use and adaptable framework for the execution of big data applications by exposing 
big data tools as ready-to-use Docker Compose4 files while its installation and deployment are 
described in deliverable D4.2 ‘Big Data Analytics Toolkit II’. The DARE platform repository is available at: 
https://gitlab.com/project-dare/dare-platform that is the starting point for deployment and 
installation. Comprehensive documentation may be found at: https://project-dare.gitlab.io/dare-
platform/.  

2.1.6 DARE Execution API 
This component exposes a RESTful API needed for the instantiation of the execution environments 
for the dispel4py and CWL workflows. It also provides functionality to the users for listing their 
folders and files, uploading and downloading files etc. The Execution API repository is available at: 
https://gitlab.com/project-dare/exec-api. 

2.2 Supporting DARE Components 

2.2.1 Playground 
This component provides the domain developers with a testing environment for workflow 
development. It exposes a RESTful API for a dispel4py execution simulation as well as for terminal 
simulation allowing the users to execute simple terminal commands. The code repository for the 
DARE Playground module is available at: https://gitlab.com/project-dare/playground.  

2.2.2 MySQL 
MySQL5 databases are used in the Dispel4py and CWL Workflow Registries to store workflow files, 
docker environments or workspaces, user information etc. 

2.2.3 MongoDB 
MongoDB6 is used in the Provenance component to store provenance traces from the workflow 
executions. 

2.2.4 Virtuoso 
Virtuoso7, due to its maturity and flexibility, was selected as the GDBMS to be used for the DARE 
platform. Virtuoso provides a hybrid server architecture for data access, virtualization, integration 
and multi-model relational database management (SQL Tables and/or RDF Statement Graphs). In 
the following link we provide a Docker image for the respective software component along with a 
Dockerfile and a script for configuration: https://gitlab.com/project-dare/docker-virtuoso.  

                                                      
4 https://docs.docker.com/compose/ 
5 https://www.mysql.com/  
6 https://www.mongodb.com/  
7 https://virtuoso.openlinksw.com/  

https://gitlab.com/project-dare/d4py-registry
https://gitlab.com/project-dare/dare-platform
https://gitlab.com/project-dare/workflow-registry
https://gitlab.com/project-dare/dare-platform
https://project-dare.gitlab.io/dare-platform/
https://project-dare.gitlab.io/dare-platform/
https://gitlab.com/project-dare/exec-api
https://gitlab.com/project-dare/playground
https://gitlab.com/project-dare/docker-virtuoso
https://www.mysql.com/
https://www.mongodb.com/
https://virtuoso.openlinksw.com/


DARE-777413 Public  D4.8 

  Page | 8  

2.2.5 SemaGrow 
SemaGrow implemented a federation engine for DKB in the initial DARE versions. While not in use 
in later platform versions , from the architect point-of- view it remains an important component for 
providing a unifying view to multiple internal and external semantic resources, should the need arise 
in the future. The repository hosting the latest implementation of SemaGrow can be found at: 
https://gitlab.com/project-dare/semagrow.  

2.2.6 ExaSpark 
ExaSpark is available within the DARE architecture and can be potentially invoked via CWL though 
it is not currently used by any use-case. Related information may be found at: 
https://gitlab.com/project-dare/ExaSpark.  

2.3 Deployment Testbed 
DARE makes use of testbeds prepared and maintained by Fraunhofer-SCAI and GRNET. GRNET has 
provided a development testbed while SCAI has provided an operational testbed which has also 
been used during demonstrations and webinars, as reported in deliverables D6.4 ‘Pilot Tools and 
Services, Execution and Evaluation Report II’, D7.4 ‘Pilot Tools and Services, Execution and Evaluation Report 
II’ and D8.5 ‘Training and Consulting Report II’. The containers are managed and orchestrated via 
Kubernetes exposing information on the status and availability of each container via its native API. 
The API is used for updating the relevant entries in the Semantic Registry as summarised in the 
following section. 

2.3.1 Operational Deployment 
As far as it concerns the operational testbed provided by SCAI the DARE platform deployment can 
be performed using the instructions listed in deliverable D4.2 ‘Big Data Analytics Toolkit II’, which 
are also available in the DARE platform microsite: https://project-dare.gitlab.io/dare-
platform/installation/. The Kubernetes specification files for platform deployment in the 
operational environment are available at: https://gitlab.com/project-dare/dare-platform/-
/tree/master/k8s-operational while users may interact with the platform with  JupyterLab (hosted 
at: https://jupyter.dare.scai.fraunhofer.de/) using their DARE credentials. JupyterLab maintains a 
copy of the DARE repository with all use-cases (https://gitlab.com/project-dare/dare-examples). 

https://gitlab.com/project-dare/semagrow
https://gitlab.com/project-dare/ExaSpark
https://project-dare.gitlab.io/dare-platform/installation/
https://project-dare.gitlab.io/dare-platform/installation/
https://gitlab.com/project-dare/dare-platform/-/tree/master/k8s-operational
https://gitlab.com/project-dare/dare-platform/-/tree/master/k8s-operational
https://jupyter.dare.scai.fraunhofer.de/
https://gitlab.com/project-dare/dare-examples


DARE-777413 Public  D4.8 

  Page | 9  

 
Figure 2: Login screen at the SCAI operational installation



DARE-777413 Public  D4.8 

  Page | 10  

3 DARE Registries 
This section provides an overview of our approach for conceptualizing - at a generic level - the 
workflows and methods implemented as well as the data assets to be handled by these during the 
workflow execution on the platform. The DARE registries cover dispel4py and CWL workflows 
accompanied by an ontology for data assets used by DARE.  

3.1 DARE disel4py information registry 
The dispel4py Registry is a RESTful Web service providing functionality for registering workflow 
entities, such as PEs, functions and literals, while encouraging sharing and collaboration via groups 
and workspaces. More information is provided in [2] as well as at the corresponding repository: 
https://gitlab.com/project-dare/d4p-registry. 

3.2 DARE CWL registry 
The CWL Workflow Registry provides a similar functionality to the Dispel4py Registry while it is 
associated with CWL workflows. More information is provided at the corresponding source code 
repository: https://gitlab.com/project-dare/workflow-registry.  

3.3 Data Ontology 
The core entity of the ontology that conceptualizes data assets handled by DARE is the Dataset, that 
entails generic information about the asset. Its origin is determined via a link to a Device entity that 
models, at an abstract level, data-producing equipment (e.g. seismometers) placed in a specific 
Location. 
 

 
Figure 3: Data Ontology - Core Entities 

 
Additional information that pertains to the rights and means for using the dataset is conceptualized 
as instances of the Distribution and Access classes. Distribution provides technical information for 
the dataset (format, type, size, etc.), while Access models licensing information and ways to 
consume the data resource (access URL, download URL). Furthermore, it links the resource with the 
SoftwareComponent that is able, and expected, to use the dataset. 
 

https://gitlab.com/project-dare/d4p-registry
https://gitlab.com/project-dare/workflow-registry


DARE-777413 Public  D4.8 

  Page | 11  

The OWL ontology that materializes the described schema is available through the relevant Git 
repository of the project8 and it is based on DCAT and FOAF. This led to the implementation of a 
semantics-based data catalogue and search component that is presented below. 

3.4 Semantic data catalogue and search 
The Semantic Data Catalogue is a Flask9 Web Service which uses Virtuoso and Solr10 as backends11  
where user data is stored in Virtuoso and indexed in Solr. The API exposes some functionalities to 
the users, such as searching data. 

4 Summary 
This report summarises the status of the Integrated Software Stack at the end of the DARE project. 
Stable versions of the core components, as reported in section 2, have been integrated in the final 
version of the DARE platform stack. All assets of the platform (code, containerized components, 
ontologies, schemas, etc.) are maintained as GitLab repositories along with their documentation. 

5 References 
[1] Klampanos et al., (2020). DARE Platform: a Developer-Friendly and Self-Optimising Workflows-
as-a-Service Framework for e-Science on the Cloud. Journal of Open Source Software, 5(54), 2664, 
https://doi.org/10.21105/joss.02664 
[2] Klampanos et al., (2019, August 6). Consistency and Collaboration for Fine-Grained Scientific 
Workflow Development: The dispel4py Information Registry. Zenodo. 
http://doi.org/10.5281/zenodo.3361395  
 
 

                                                      
8 https://gitlab.com/project-dare/data-catalogue/-/blob/master/dare-data.owl   
9 https://flask.palletsprojects.com/en/1.1.x/  
10 https://lucene.apache.org/solr/ 
11 https://gitlab.com/project-dare/semantic-data-discovery 

https://doi.org/10.21105/joss.02664
http://doi.org/10.5281/zenodo.3361395
https://gitlab.com/project-dare/data-catalogue/-/blob/master/dare-data.owl
https://flask.palletsprojects.com/en/1.1.x/
https://gitlab.com/project-dare/semantic-data-discovery

	1 Introduction
	1.1 Purpose and Scope
	1.2 Relationship with other Work Packages and Deliverables
	1.3 Methodology and Structure of the Deliverable

	2 DARE Software Stack and Components
	2.1 Core DARE Components
	2.1.1 dispel4py
	2.1.2 s-ProvFlow
	2.1.3 d4py-registry
	2.1.4 CWL workflow registry
	2.1.5 DARE deployment configuration (extending Big Data Integrator)
	2.1.6 DARE Execution API

	2.2 Supporting DARE Components
	2.2.1 Playground
	2.2.2 MySQL
	2.2.3 MongoDB
	2.2.4 Virtuoso
	2.2.5 SemaGrow
	2.2.6 ExaSpark

	2.3 Deployment Testbed
	2.3.1 Operational Deployment


	3 DARE Registries
	3.1 DARE disel4py information registry
	3.2 DARE CWL registry
	3.3 Data Ontology
	3.4 Semantic data catalogue and search

	4 Summary
	5 References

