
DARE-777413 Public D5.2

 Page | 1

H2020-EINFRA-2017

EINFRA-21-2017 - Platform-driven e-infrastructure innovation
DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

D5.2 Platform Infrastructure, Usage &
Deployment II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D5.2 Platform Infrastructure, Usage & Deployment II

Work package WP5: Platform Operation and Maintenance

Tasks involved
T5.1: Provision of Relevant Cloud Infrastructure
T5.2: Provision of Pre-release Testbeds
T5.3: Deployment Strategy and Platform Operation

Type R: Document, report

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) M. Roth (SCAI), H. Schwichtenberg (SCAI), A. Gemünd (SCAI)

Contributor(s) S. Sachtouris (GRNET)

Reviewer(s) F. Magnoni (INGV)

Document description

This deliverable represents an update of Deliverable D5.1. It presents
an overview of the platform design focusing on infrastructure
components, depicts the deployment strategy employed throughout
the project and provides related usage information. Moreover, it

DARE-777413 Public D5.2

 Page | 2

specifies the underlying computational resources mobilized by
GRNET and SCAI to provide development and operation of the DARE
platform.

DARE-777413 Public D5.2

 Page | 3

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

v1 14/09/2020 Initial Structure M. Roth (SCAI)
v2 14/10/2020 First Draft M. Roth (SCAI)
v3 12/11/2020 Revision H. Schwichtenberg (SCAI)
v4 09/12/2020 Revision A. Gemünd (SCAI)
v5 09/12/2020 Chapter 3.2 S. Sachtouris (GRNET)
v6 10/12/2020 Final version M. Roth (SCAI)
v7 10-11/12/2020 Internal review F. Magnoni (INGV)

DARE-777413 Public D5.2

 Page | 4

Executive Summary
The present document reports on the work performed in the scope of WP5, which was responsible for
the provision and management of the cloud environments made available for the DARE platform. This
included the deployment, configuration and operation of required infrastructure, system software and
DARE components.

This deliverable gives an overview over the platform design focusing on infrastructure components,
reports on the deployment strategy, presents the deployment schedule and provides related usage
information. Moreover, it specifies the underlying computational resources mobilized by GRNET and
SCAI.

DARE-777413 Public D5.2

 Page | 5

Table of Contents

1 Introduction 8

1.1 Purpose and Scope 8

1.2 Approach and relation with other Work Packages and Deliverables 8

1.3 Methodology and Structure of the Deliverable 8

2 Platform Infrastructure Development 9

3 Infrastructure and Platform 9

3.1 Cloud-Ready Platform 9

3.2 Testbed/Pre-Release Infrastructure 16

3.3 Productive DARE Environment 17

3.4 Relation to EOSC 18

4 Platform Deployment 18

4.1 Deployment Strategy 18

4.2 Deployment Schedule 24

4.3 Automation of Deployment 27

5 Usage of the DARE Platform environments 27

6 Conclusion 35

DARE-777413 Public D5.2

 Page | 6

List of Figures
Figure 1: Cloud-ready DARE platform
Figure 2: Kubernetes and Rook interactions
(Source: https://rook.io/docs/rook/v1.4/ceph-storage.html)
Figure 3: Ingress routing to DARE services
Figure 4: Keycloak Dashboard
Figure 5: Example login flow in DARE
Figure 6: IaaS environment presenting the compute resources of testbed
Figure 7: Deployment pipeline
Figure 8: Dockerfile for DARE login-service
Figure 9: Deployment descriptor of DARE-login service
Figure 10: Service descriptor of DARE-login service
Figure 11: PersistentVolumeClaim for d4py-registry
Figure 12: gitlab-ci.yml for s-ProvFlow
Figure 13: DAREs vulnerability scans with Harbor
Figure 14: CPU usage during Apache Benchmark test
Figure 15: CPU usage during “long term” stress test
Figure 16: CPU usage during DARE training event
Figure 17: CPU/Memory usage during SPECFEM 3D simulations
Figure18: CPU/Memory usage of DARE components during deployment
Figure 19: CPU/Memory usage of stateful DARE components

List of Tables
Table 1: Exemplary Kubernetes commands
Table 2: DARE platform releases

https://rook.io/docs/rook/v1.4/ceph-storage.html

DARE-777413 Public D5.2

 Page | 7

List of Terms and Abbreviations

Abbreviation Definition
AAI Authentication and Authorization Infrastructure
API Application Programming Interface
AWS Amazon Web Services
CPU Central Processing Unit
EGI European Grid Infrastructure
EOSC European Open Science Cloud
GRNET Greek National Infrastructures for Research and Technology
HPC High Performance Computing
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
MPI Message Passing Interface
MS Milestone
RBAC Role-Based Access Control
SCAI Scientific Computing and Algorithms Institute (Fraunhofer)
SSO Single Sign-On
WP Work Package

DARE-777413 Public D5.2

 Page | 8

1 Introduction
One of the central goals of the DARE project was the development of a cloud-ready platform, supporting
research developers in utilizing the diverse landscape of e-infrastructures and handling the complexity
of diverse data sources, complex computations and computational contexts for their scientific
workflows. WP5 - Platform Operation and Maintenance, was responsible for providing and managing
the operational and testing cloud environments for the DARE platform, which included the deployment,
configuration and operation of required infrastructure, system software and DARE components.
Moreover, WP5 developed a packaged platform solution that is easily deployable e.g. on public clouds
like European Open Science Cloud (EOSC). Also the provision of complementary guidelines and usage
information of the platform was part of WP5.

1.1 Purpose and Scope
The purpose of this document is to report on the work performed in T5.1: Provision of Relevant Cloud
Infrastructure, T5.2: Provision of Pre-release Testbeds and T5.3: Deployment Strategy and Platform
Operation. It gives an overview over the platform design focusing on infrastructure components and
specifies the underlying infrastructures (testbed and productive environment). Connecting to D5.1, the
applied deployment strategy is outlined and the updated deployment schedule of all platform releases
is presented. Finally, it provides related usage information.

1.2 Approach and relation with other Work Packages and Deliverables
While this document focuses on the description of infrastructure aspects, D5.4- Platform Operation and
Maintenance II, produced in the scope of T5.4, provides the related installation, deployment and
operation documents for the DARE platform.
Altogether, the infrastructure specification of the DARE platform developed in WP5 is in alignment with
the architecture developed in WP2 and motivated by the requirements and the feedback provided by
the use cases in WP6 and WP7.
In cooperation with WP3 and WP4, WP5 performed the containerisation of the DARE components and
offered support with the integration and testing of software assets, tools and services developed in the
other WPs.

1.3 Methodology and Structure of the Deliverable
Initially, in chapter 2 we shortly describe the general strategy followed to provide the infrastructural
framework for the development and provision of the DARE platform. In chapter 3, we summarize and
explain the relevant infrastructure components, specify the underlying hardware of the production
platform as well as the testbed environment and briefly describe the relation to EOSC. In chapter 4, we
outline the deployment strategy already introduced in D5.1 and align it to the latest status. Finally, in
chapter 5 we provide further information regarding the three main usage purposes of the DARE
platform during the project phase, namely development, testing and training.

DARE-777413 Public D5.2

 Page | 9

2 Platform Infrastructure Development
The cloud-based DARE platform was developed as a user-friendly, easily deployable framework
allowing to make use of available and upcoming EOSC services. However, at the beginning of the DARE
project, the implementation status of the usable EOSC services was still unclear. Additionally, the
project needed a directly usable infrastructure for the development and prototyping of services and
their application for the use case scenarios. Therefore, the partners decided to adopt the following
strategy:

In a first step, WP5 focused on providing and maintaining a pre-release infrastructure (testbed) which
included the software development environment for the continuous integration and testing of the
DARE software products. The aim was to support the agile software development and containerization
of the DARE services right from the beginning of the project and to automate a continuous delivery.
This testbed environment was provided on cloud resources at GRNET and was equipped with the same
prerequisites, which were also intended to be built in the production environment.

In a second step, WP5 set up this production environment, by means of a deployed, integrated and
operational instance of the DARE platform, which is provided on SCAI’s cloud resources provisioned in
the scope of the EGI Federated Cloud (part of the EOSC). This platform already comprises all necessary
components for the use cases developed in WP6 (seismology) and WP7 (climate) and already includes
a configured Authentication and Authorization (AA) solution for the related research communities. It is
a demonstrator, displaying functionality and usability of the developed solution.

Additionally to this operational instance of DARE platform, partners decided also to provide a packaged
version of the platform, easily deployable on cloud resources (e.g., EOSC, AWS). In this way, also users
from other research communities are equipped with a basis development kit to facilitate development
of their own community-specific use cases and applications.

3 Infrastructure and Platform
In this chapter, we have a look at the DARE platform itself, focusing on the infrastructural components,
and moreover, we specify the underlying cloud infrastructures at SCAI and GRNET including relevant
hard- and software components.

To realize the DARE platform, several components needed to be brought together. Low-level
infrastructural services needed to come together with the specific DARE services and tools as well as
the domain-specific applications of the two use cases. In chapter 3.1, we hence give an overview over
all platform components focusing on the infrastructural parts. In chapters 3.2- Testbed/Pre-Release
Infrastructure and 3.3- Productive DARE Environment we describe the underlying resources provided
for DARE, in the Clouds at GRNET (okeanos) and SCAI (Openstack). Finally, in 3.3 we take a closer look
at the extent to which it was possible to collaborate with the initiatives of EOSC and make use of EOSC
services.

3.1 Cloud-Ready Platform
The DARE stack, which builds on top of containerisation (Docker, Kubernetes) as well as parallelisation
technologies (MPI), operates at the interface to the underlying compute resources as well as to the

DARE-777413 Public D5.2

 Page | 10

developed user applications. Next to the independent “DARE components” realizing the DARE
architecture, the platform also includes several supporting and general-purpose components providing
generic functionality to the platform such as e.g. storage, monitoring and authentication. In the
following overview, the individual components are briefly summarized.

The main DARE components are the following:

• DARE Login Service: interacts between DARE components and Keycloak. It exposes
functionality for sign in to the platform including refreshing and validating a token.

• dispel4py: Python library for implementing workflows, especially stream-based workflows for
data-intensive workflows but also generic sequences of executions of applications (Processing
Elements in a Graph) with data flow between them (edges of the Graph). Maps execution on
different execution environments, e.g. MPI, Spark or local execution with Python
multiprocessing.

• dispel4py-registry: that acts as the registry of the available processing elements of dispel4py
• CWL Workflow registry: that acts as the registry for workflows based on CWL s-ProvFlow: that

is responsible for collecting, preserving and reporting on provenance information from the
workflow execution over the platform.

• DARE Execution API: enables the distributed and scalable execution of dispel4py and CWL
workflows.

• DARE Exec Registry: was historically used to store and track experiments / executions on the
DARE platform and its corresponding workspace. Has been merged into Exec API during the
project.

• DARE playground: that builds an environment for testing and debugging, especially dispel4py
workflows.

• DARE Semantic Search: allows to search through metadata in the Data catalogue using linked
data principles

• JupyterHub: offering a pre-configured data science environment (customized for DARE)
• Data Catalogue: web service offering a simple interface to insert metadata about DARE data in

the form of RDF into a triplestore based on OpenLink Virtuoso
• Provenance Service (S-ProvFlow): A collection of services including a Web API (provenance-

api) and a front-end GUI (sprovflow-viewer) allowing acquisition, storage, exploration and
visualization of provenance data which is produced at run-time by DARE Executions.

• SemaGrow: a federated SPARQL query processor that allows combining and cross-indexing
remote datasources. It hides heterogeneity from client applications by federating SPARQL and
non-SPARQL endpoints and meaning by mapping queries and query results between
vocabularies.

• Exareme: A distributed and federated processing engine that provides a declarative language
to define dataflows. Its algorithms are written in SQL with Python extensions to declaratively
express data parallelism and complex computations using user-defined functions.

Apart from these, the platform also includes the following supporting and general-purpose
components, that on the one hand build the infrastructural basis for the developed DARE components
and on the other hand facilitate the execution of the main components:

• Docker/Kubernetes: allowing for integration of containerized software components, container
management and orchestration

DARE-777413 Public D5.2

 Page | 11

• Rook ceph: providing the main distributed storage facility for the cluster, used to persist data
between runs and store the users workspace

• Helm/Tiller: to help manage Kubernetes applications
• mpi-operator: that is used to enable the execution of MPI jobs in Containers as Kubernetes

jobs
• cert-manager: enabling automatic x509 certificate management for Kubernetes services
• Ingress: acting as the main entry point to the platform, redirecting external requests to

the corresponding pods running the applications such as DARE Execution or Provenance API.
• Keycloak: acting as the authentication and authorisation server, backend for the DARE login

service
• Prometheus, Alertmanager and Grafana: for collecting and visualizing metrics of the cluster’s

performance for monitoring and operations.
• Harbor: ensures that the container images are free from vulnerabilities
• Mysql: acting as persistent storage of the d4p-registry
• Mongodb: acting as persistent storage of sprov
• Virtuoso: acting as persistent storage of the data-catalogue
• sprov-viewer: used as the frontend user interface for visualized provenance from sprov.
• RabbitMQ: used as a message queueing service for scalability of provenance insertion
• SOLR/Lucene: used for indexing of metadata terms for the DARE semantic search service

While the DARE components including the supporting systems rather belong to the scope of the other
WPs and deliverables, WP5 was primary responsible for the layer building the infrastructural basis and
framework for the DARE platform. This infrastructural framework consists of diverse tools that are
illustrated in figure 1.

Figure 1: Cloud-ready DARE platform

Docker/Kubernetes-Universe
Already at the beginning, the project partners decided to rely on orchestrated micro services. Reason
for this was among others, that a microservice-based architecture allows thinking about services as self-
contained, independent applications, which facilitates their development. Also benefits like e.g. a more
easy scaling and the possibility for more efficient system optimization and organization are advantages
that make their use quite attractive.

DARE-777413 Public D5.2

 Page | 12

For container management and orchestration, the project decided to use Kubernetes. The Kubernetes
orchestration enables the effortless cloud deployment of the DARE platform and also the automated
scaling and management of containerized applications (see chapter 4.1). Cluster management and
deployment is operated through an API exposed by Kubernetes. This API enables external and internal
communication exploiting user-client authentication. Kubernetes API additionally provides Role-Based
Access Control (RBAC) that binds a user-client (which can be a containerized application) to the cluster.
Using RBAC makes user authentication and access flexible and manageable by enabling permission
control for Kubernetes resources. In DARE, the Kubernetes API is connected to the DARE Keycloak and
roles are mapped from the Keycloak as well, so the DARE deployment provides a single point where
permissions for Applications and the environment itself (Kubernetes) can be controlled.

One of the ideas of DARE is the enrollment of a complete infrastructure in the cloud including storage,
which is not directly covered by Kubernetes itself. For this purpose, DARE makes use of Ceph1. Ceph is
an open source, cloud-native and highly scalable distributed storage solution. To manage the Ceph
deployment and integration into Kubernetes, DARE makes use of the Rook project2. Rook implements
native Kubernetes operators which automate nearly all aspects of storage administration such as
deployment of Ceph in Kubernetes, configuration, provisioning, upgrades and monitoring. It
implements the Kubernetes Container Storage Interface (CSI) to make Ceph-based storage usable as
normal Kubernetes volumes. Thus, Kubernetes applications are able to mount block devices and
filesystems managed by Rook as native Kubernetes volumes. The CephFS filesystem additionally offers
the functionality of a shared filesystem writable by multiple pods of the same time, in addition to the
usual remote block device (RBD) based volumes that can be used by only one pod in read-write-mode
at the same time. This CephFS filesystem is used in DARE to implement the workspaces that store the
enduser files in DARE, e.g. to provide a shared filesystem for MPI computations where multiple pods
need to access the shared directory between the running job pods. Figure 2 illustrates how Ceph Rook
integrates with Kubernetes.

To facilitate the deployment and management of some components on the Kubernetes Cluster, Helm
is used. Helm is a package manager for Kubernetes that allows developers and operators to more easily
package, configure, and deploy applications and services onto Kubernetes clusters. There are two parts
to Helm: the Helm client (helm) and the Helm server (Tiller).3

1 https://ceph.io/
2 https://rook.io/docs/rook/v1.2/
3 https://v2.helm.sh/docs/install/

https://ceph.io/
https://rook.io/docs/rook/v1.2/
https://v2.helm.sh/docs/install/

DARE-777413 Public D5.2

 Page | 13

Figure 2: Kubernetes and Rook interactions4

Reverse Proxy:
To manage external access to the DARE platform, the Kubernetes Ingress5 functionality is used,
specifically the ingress-nginx controller6. Ingress exposes HTTP and HTTPS routes from outside to
services within the DARE environment. Traffic routing is controlled by rules defined on the Ingress
resource.

Figure 3: Ingress routing traffic to DARE services

Authentication and User Federation:
One major objective of WP5 was the provision of a reliable login service for the DARE platform. The
authentication mechanism comprises the process of determining whether someone is, in fact, who he

4 © Rook Authors 2020. Documentation distributed under CC-BY-4.0, https://rook.io/docs/rook/v1.4/ceph-storage.html
5 https://kubernetes.io/docs/concepts/services-networking/ingress/
6 https://github.com/kubernetes/ingress-nginx

https://creativecommons.org/licenses/by/4.0
https://rook.io/docs/rook/v1.4/ceph-storage.html
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/kubernetes/ingress-nginx

DARE-777413 Public D5.2

 Page | 14

declares himself to be. The authorization management, based on different roles, is needed to ensure
that users with specific roles only have associated rights and only see data, relevant for their purposes.

To this end, we setup a single sign-on (SSO) environment based on Keycloak7. Keycloak is an “Open
source identity and access management” solution, that allows to setup a central Identity Provider that
applications (acting as Service Providers) use to authenticate and authorize user access. Furthermore,
to seamlessly integrate with EOSC, the platform’s authentication and authorization mechanisms have
been designed to be interoperable with existing Authentication and Authorization Infrastructure (AAI).
To that end, the DARE platform employs OAuth2 with OpenID Connect. The same technology is the
basis for the EOSC portal8, EGI Check-In9 and EUDAT B2Access10. Through the use of an own Keycloak
deployment, the DARE platform allows community administrators the choice to implement their own
identity databases or integrate with all providers or proxies that implement the OAuth2 with OpenID
Connect technology. These include the ones mentioned above as well as many other providers, such as
Google, Facebook, GitHub, etc.

Figure 4: Keycloak Dashboard

This technology makes it also easy to couple with authenticating proxies (e.g. former Keycloak
Gatekeeper, Lukeko or OAuth2 Proxy11) in Kubernetes sidecar containers, which are automatically
injected with application containers on Kubernetes pods and act as a reverse proxy to the application.
Connections to the service go to the sidecar proxy first, which checks if the user is already authenticated
and if not sends a forward header to the login page. If the user is authenticated, the request is
forwarded to the service with additional HTML headers injected, which allow the application to identify
the user.

7 https://www.keycloak.org/
8 https://www.eosc-portal.eu/
9 https://www.egi.eu/services/check-in/
10 https://eudat.eu/services/b2access
11 https://github.com/oauth2-proxy/oauth2-proxy

https://www.keycloak.org/
https://www.eosc-portal.eu/
https://www.egi.eu/services/check-in/
https://eudat.eu/services/b2access

DARE-777413 Public D5.2

 Page | 15

In the following, we present an exemplarily login flow:

1. A user wants to access a specific service via DARE´s JupyterHub
2. Clicking on the “Login” button causes that his request arrives at the reverse proxy. This service

sits between the applications/services and the external user and forwards the requests to the
appropriate service, in this case JupyterHub.

3. JupyterHub then sends the user to the Keycloak service. Keycloak is able to authenticate users
e.g. with existing OpenID Connect or SAML 2.0 Identity Providers.

4. In the last step, Keycloak allows/not allows the access to the addressed service (JupyterHub)
5. The user token is loaded into users’ notebook to provide SSO to the DARE services

Figure 5: Example login flow

Compute:
In general, the DARE execution service API is a programmatic way to run and manage workflows based
on the standard CWL12 or dispel4py. To support parallel processing and enable the run of applications
using MPI like e.g. SPECFEM3D13 in the DARE cluster we use the MPI Operator, which is one of the core
components of Kubeflow14, a project aiming to make deployments of machine learning (ML) workflows
on Kubernetes simple, portable and scalable.

Monitoring:
For monitoring and alerting, we use the open-source stack consisting of Prometeus15, Alertmanager16
and Grafana17. Prometheus, which scrapes and stores time series data, acts as the backend for Grafana,
which is used as visualization software. The Alertmanager handles alerts sent by the Prometeus server
and takes care of deduplicating, grouping, and routing them to the correct receiver. To implement this

12 https://www.commonwl.org/
13 https://geodynamics.org/cig/software/specfem3d/
14 https://v0-2.kubeflow.org/docs/about/kubeflow/
15 https://prometheus.io/
16 https://prometheus.io/docs/alerting/latest/alertmanager/
17 https://grafana.dare.scai.fraunhofer.de/

https://www.commonwl.org/
https://geodynamics.org/cig/software/specfem3d/
https://v0-2.kubeflow.org/docs/about/kubeflow/
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://grafana.dare.scai.fraunhofer.de/

DARE-777413 Public D5.2

 Page | 16

monitoring stack on the DARE cluster, individual components, manifests, Prometheus metrics and
Grafana dashboards have been configured.

Security
For automated certificate management and issuance of TLS certificates we use cert-manager18, which
is native to Kubernetes. It is configured to automatically retrieve, manage, deploy and renew
certificates for the external domains through the ACME protocol from the Let’s Encrypt online
Certificate Authority.19 This relieves the administrators from the DARE deployment from nearly all
burdens related to the management of certificates for secure TLS/HTTPS connections.

3.2 Testbed/Pre-Release Infrastructure

The cloud infrastructure for the testbed is deployed and maintained at GRNET's okeanos-knossos IaaS
cloud. It currently consists of 6 VMs of two classes of resources.
The okeanos-knossos cluster20 is a large IaaS cluster located at Crete, Greece and operated by GRNET.
It is powered by Synnefo21, an IaaS software with OpenStack-compatible APIs for compute, network
and object storage.
A kubernetes cluster utilizes 3 VMs of 16 cores, 16GB RAM and 30 GB of permanent storage each and
40 GB extension each. The total storage space available for the kubernetes deployment is 210GB. A
private network is also used to connect the 3 VMs. The kubernetes deployment consists of two masters
(dare-kubernetes-1 and 2), while all three act as nodes.
The lifecycle of the testbed has been disrupted a few times during the development of the platform
due to experimentations with immature or incomplete configurations and software. This was expected,
though, as it was meant to be a punchbag for IT engineers, software developers and scientists
contributing to the project, so it often had to be destroyed and rebuild over fresh resources.
There are also 3 VMs for auxiliary applications: a jumphost to access and manage the Kubernetes
cluster, a testbed2-node1 to perform risky experiments related to the Kubernetes cluster and a VM to
perform Authorization/Authentication experiments. Each of these is powered by 2 cores, 2MB of RAM
and 30GB.
Access and utilization of the testbed resources was offered throughout the project development
lifecycle. Collaborators were assisted with additional software whenever required (i.e. kamaki22,
kamaki-ansible-role23) to automate access to the IaaS cloud. Technical support and statistics where
provided by the GRNET okeanos-knossos operators whenever requested.

18 https://cert-manager.io/docs/
19 https://letsencrypt.org/
20 https://okeanos-knossos.grnetcloud.net
21 https://synnefo.org
22 https://www.synnefo.org/docs/kamaki/
23 https://github.com/saxtouri/kamaki-ansible-role/

https://cert-manager.io/docs/
https://letsencrypt.org/
https://okeanos-knossos.grnetcloud.net/
https://synnefo.org/
https://www.synnefo.org/docs/kamaki/
https://github.com/saxtouri/kamaki-ansible-role/

DARE-777413 Public D5.2

 Page | 17

Figure 6: IaaS environment presenting the compute resources of testbed

3.3 Productive DARE Environment
The productive instance of DARE platform is orchestrated on SCAI´s OpenStack Cloud, which is part of
the EGI Federated Cloud.
The permanent, for DARE reserved virtual resources provide a performance comparable with the
performance of seven physical servers, equipped with 2x Intel Server CPUs@2.30GHz and 192GB RAM
each. The Ceph storage system is hosted on the same nodes (hyper-converged) using Rook Ceph on 42
dedicated harddisks, offering a total of 241 TiB storage space for the DARE deployment. These
resources were sufficient to serve up to 15 users running experiments and workflows in parallel during
the performed training events and webinars. In case of trainings with more users, or higher compute
intensive applications, or for major benchmarking tests, we were able to increase the provided DARE
cloud resources.
Throughout the whole project period, SCAI provided technical support and consulting for the DARE
partners and users, via direct contact and ticket system. Special support and consulting were provided
for use case development and for the optimization of individual components.
During trainings and other events, the infrastructure and the access to it was monitored specifically and
technical staff was available to be able to intervene in case of failure.

DARE-777413 Public D5.2

 Page | 18

3.4 Relation to EOSC
Right from the beginning of the project, partners envisaged to fuse the DARE platform with the at that
time newly arising landscape of the European Open Science Cloud. More specifically, this means that
during the project duration partners continuously pursued all relevant upcoming technical solutions
and services under the umbrella of EOSC and inspected to what extend these could be beneficial for
the DARE project.
Services developed in the scope of European projects on the way to EOSC esp. EOSC-hub24, which have
proved to be useful, were already integrated in DARE. For example, the DARE login service is
interoperable with EGI-Checkin25 and for high volume data exchange B2Drop26 is used.

In general, there is a strong connection between EOSC and the partners in DARE, which are e.g. also
involved in EOSC-hub and other European projects, which may be considered as preparation projects
for the EOSC. From that, a strong technical influence was presents and the DARE platform was as far as
possible designed to be interoperable with upcoming and available EOSC services. Resources/VMS of
SCAI and GRNET, used in DARE, are provisioned in the scope of the Federated Cloud (EOSC–HUB).

DARE intended to offer the final DARE platform on the EOSC marketplace27, which offers easy access to
operational services (provided by diverse providers) and resources for various research domains. While
it was considered a great opportunity to present the DARE platform to other scientific communities, it
was found in discussion with related EOSC projects that the marketplace currently does not offer the
correct general framework to publish the kind of result of DARE (i.e., a kind of SDK instead of a running
service).

4 Platform Deployment
For the development and optimization of the platform that is adapted to the requirements of the two
use cases, DARE used a deployment strategy that was already introduced in D5.1. In the following
chapter 4.1, we will reiterate this deployment strategy and adapt it to the latest status. In chapter 4.2,
we present a detailed schedule of all platform releases within the course of the project. Finally, in
chapter 4.3 we shortly describe how the automated deployment of the final and packaged platform
release was realized. Related deployment guidelines for users are provided in D5.4.

4.1 Deployment Strategy
In close collaboration with the other work packages, a process was defined to standardise the
development of all DARE components and guide the testing cycles. The deployment process for new
releases of the DARE platform can be summarized in six steps, visualized in figure 1.

24 https://www.eosc-hub.eu/
25 https://www.egi.eu/services/check-in/
26 https://eudat.eu/services/b2drop
27 https://marketplace.eosc-portal.eu/

1. Software
Development

and first Testing

2. Provision of
Docker and

Kubernetes Files

3. Deployment to
Pre-

ReleaseTestbed
4. Application

Acceptance Tests
5. Deployment to

Productive
Environment

6. Post
Deployment

Tests

https://www.eosc-hub.eu/
https://www.egi.eu/services/check-in/
https://eudat.eu/services/b2drop
https://marketplace.eosc-portal.eu/

DARE-777413 Public D5.2

 Page | 19

Figure 7: Deployment pipeline

(1) Software Development and first Testing
For the development and first testing (e.g., component testing, integration testing) of the individual
software products and platform components, WP5 set up a software development platform/pre-
release environment, which was continuously adjusted to meet the requirements of the development
teams. This environment is provided in GRNETs cloud infrastructure okeanos28 and was available for
DARE developers from the beginning of the project.

(2) Provision of Docker29 and Kubernetes30 Files
As described in chapter 3.1, the project decided to rely on orchestrated micro services. For container
management and orchestration, the project decided to use Kubernetes, which is the most prominent
among the orchestration tools and widely used in both research and industry. It enables automated
deployment, scaling and management of containerized applications and exposes information on the
status and availability of each container via its native API, which facilitates operation and management
of the deployment.

Therefore, after the successful development of the individual services, (see 1. in Fig.1) the next step
was the provisioning of related Docker and Kubernetes files (see 2. In Fig.1). To give a short insight, in
the following we exemplarily present the Docker and Kubernetes files for the DARE login service31.

A dockerfile is a text document containing all commands a user would have to call on the command line
to assemble a specific image. By using the dockerfile an automated build is created, that successively
executes all pre-configured instructions and thereby creates the required image to initiate a container
later.

Figure 2 shows a cut-out of the dockerfile for the configuration of the DARE login-service, based on the
nginx-proxy image and published in the respective gitlab repository at https://gitlab.com/project-
dare/dare-platform/-/blob/master/containers/dare-login.

28 https://okeanos.grnet.gr/home/
29 https://www.docker.com/get-started
30 https://kubernetes.io/
31 https://project-dare.gitlab.io/dare-platform/api/

https://gitlab.com/project-dare/dare-platform/-/blob/master/containers/dare-login
https://gitlab.com/project-dare/dare-platform/-/blob/master/containers/dare-login
https://okeanos.grnet.gr/home/
https://www.docker.com/get-started
https://kubernetes.io/
https://project-dare.gitlab.io/dare-platform/api/

DARE-777413 Public D5.2

 Page | 20

Figure 8: dockerfile for DARE login-service32

After the build of the dockerfiles, the service images were made available for usage by pushing them
to the Gitlab Container Registry of the DARE development project.

Next, the Kubernetes files, defining and organizing the container orchestration across the cluster were
created. Depending on the service, different files were generated. For the DARE-login service e.g. a
deployment33 and a service34 descriptor have been created.

A deployment descriptor describes the desired state of a deployment, i.e. how and where certain
containers should be running on a Kubernetes cluster. There are several parameters described, such as
which container images to run where, the number of pods to be started, and the way in which they
should be updated. Altogether, the deployment file describes the whole life cycle of the deployment.
A cut-out of the deployment descriptor of the DARE-login service is presented in figure 9.

32 https://gitlab.com/project-dare/dare-platform/-/blob/master/containers/dare-login/Dockerfile
33 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
34 https://kubernetes.io/docs/concepts/services-networking/service/

https://gitlab.com/project-dare/dare-platform/-/blob/master/containers/dare-login/Dockerfile
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/

DARE-777413 Public D5.2

 Page | 21

Figure 9: deployment descriptor of DARE-login service35

A service in Kubernetes, defined through a service descriptor, is an abstraction, which allows you to
expose an application running on a set of pods to the network, e.g. it exposes a web service interface
under a certain name and port to other pods running in the Kubernetes cluster or the outside world (or
both). Exemplarily in figure 10 the service descriptor of the DARE-login service is shown.

Figure 10: service descriptor of DARE-login service36

For other services, the provision of further files is needed. E.g. the d4p-registry, which includes a
database, needs a further file for claiming a persistent volume (see figure 11).

35 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-dp.yaml
36 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-svc.yaml

https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-dp.yaml
https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-svc.yaml

DARE-777413 Public D5.2

 Page | 22

Figure 11: PersistentVolumeClaim for d4py-registry37

(3) Deployment to Testbed
After the creation of the above-mentioned files, the newly developed software releases were deployed
on the Pre-Release Testbed environment at GRNET, which was designed similar to the productive
platform environment provided on Cloud resources at SCAI.

Using the Kubernetes API, it was possible to manually create the deployment e.g. for the DARE login
service by running the following commands:

1. To deploy the deployment file.

kubectl apply -f https://gitlab.com/project-dare/dare-platform/-

/blob/master/k8s/dare-login-dp.yaml

2. To deploy the service file.

kubectl apply –f https://gitlab.com/project-dare/dare-platform/-
/blob/master/k8s/dare-login-svc.yaml

To check whether, the deployment was correctly created and all pods are up and running, Kubernetes
provides simple commands38 like:

Table 1: Exemplary Kubernetes commands

kubectl get deployments

displays the status of deployments

kubectl get pod

displays the name and status of pods in the default namespace of
the Kubernetes environment

kubectl get pod –o wide

additionally provides information about the orchestration of the
pods over the Kubernetes nodes

Next to the manual deployment, partners were also provided with the possibility to use the gitlab-ci39,
a tool build into the Gitlab, which continuously (once a day) performed automated deployments and
pre-defined unit tests in the Kubernetes environment of the Pre-Release Testbed environment. In case
of error messages or if certain problems become apparent during the deployment process, issues were
reported via GitLab. As an example figure 12 shows the gitlab-ci.yml file, configuring the checking
pipeline for the s-ProvFlow service.

37 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/d4p-registry-db-ss.yaml
38 https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
39 https://docs.gitlab.com/ee/ci/

https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-dp.yaml
https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-dp.yaml
https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-svc.yaml
https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-svc.yaml
https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/d4p-registry-db-ss.yaml
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://docs.gitlab.com/ee/ci/

DARE-777413 Public D5.2

 Page | 23

Figure 12: gitlab-ci.yml for s-ProvFlow40

(4) Application Acceptance Tests
Following these simple build and unit tests, further functionality and security tests were performed
before the release was finally provided in the productive DARE platform. Functionality tests were
performed to ensure that the applications of the involved use-cases work and meet the expectations
of the domain specific communities. Therefore, in the first step the software developers verified that
all software components and features as well as complete workflows act in accordance with pre-
determined technical and functional requirements.
For the basic platform components, which include the dare login service, the two registries, the
Execution API and the sprov API, the DARE partners e.g. developed specific tests, which are provided in
DAREs Gitlab repository. The tests were used to check the deployed services, running in the productive
DARE environment, but could also be used by future users to test local DARE installations. Instructions
for the individual tests are provided in the corresponding ReadMe.md files (https://gitlab.com/project-
dare/dare-platform/-/tree/master/test_dare_components).

Additionally, partners also performed benchmarks e.g., of s-ProvFlow API to compare the difference in
overhead imposed on services using the s-ProvFlow API with the provenance insert queue enabled or
disabled. This helped to understand the general behavior of s-ProvFlow and encouraged tuning
possibilities (see https://gitlab.com/project-dare/s-ProvFlow/-/tree/master/docker/benchmark).

Next to these manual tests, in a second step, the DARE services and packages were tested in the scope
of the use case WPs, where the developers implemented their workflows based on them. In this way it
was possible to test whether the packages and services are complete, functional and provide correct
results.

40https://gitlab.com/project-dare/s-ProvFlow/-/blob/master/.gitlab-ci.yml

https://gitlab.com/project-dare/dare-platform/-/tree/master/test_dare_components
https://gitlab.com/project-dare/dare-platform/-/tree/master/test_dare_components
https://gitlab.com/project-dare/s-ProvFlow/-/tree/master/docker/benchmark
https://gitlab.com/project-dare/s-ProvFlow/-/blob/master/.gitlab-ci.yml

DARE-777413 Public D5.2

 Page | 24

In a third step, real users were consulted, to test the DARE platform and to measure how intuitive and
helpful the developed tools are. To this end, DARE partners organized training events with users from
the climate and seismology community, which allowed the partners to gather feedback for the next
development phase. More detailed information and the analysis of feedback is summarized in the
deliverables of the related work packages WP6, WP7 and WP8, in D6.3, D6.4, D7.3, D7.4, D8.4 and D8.5.

In the last step, simple security testing was performed. For security testing of the Kubernetes and
Docker deployments, WP5 set up a Harbor41 installation. As soon as ready Docker images were marked
for security check, the images were uploaded to the Harbor registry reachable at
https://harbor.dare.scai.fraunhofer.de. The Harbor server scanned the images for possible
vulnerabilities, and finally if no security issues occurred, signed them as trusted. Trusted images were
finally deployed in the production environment of DARE platform (see (5)).

Figure 13: DAREs vulnerability scans with Harbor

(5) Deployment to Productive Environment
After the successful conclusion of this testing phase, in the fifth step the components were published
to the production platform. More specifically, this means that the final images provided through the
corresponding gitlab repository were pushed to the Kubernetes environment provided at SCAI, which
is described in chapter 3.3. The deployment procedure runs analogous to the deployment in (3).

(6) Post Deployment Tests
Next to the application testing in (4), partners also performed stress and load testing to assess
performance, stability and effectiveness of the basic components. For example, we checked individual
components with tools like “Apache benchmark”, to verify that all services have acceptable average
request times.
Moreover, in advance of training events, test-user accounts simultaneously running jobs were used to
test whether the system is stable and jobs finish successfully. In training events with hands-on sessions
like the volcanology summer school at KIT on 24 July 2020, the Climate and Atmospheric Sciences
webinar on 16 October 2020 and the seismological webinar on 11 November 2020, real users tested
the operational DARE environment not only for usability but also for stability and robustness. Further
information on the infrastructure testing is described in chapter 5 - Usage of the DARE Platform
environments.

4.2 Deployment Schedule
As already described in D5.1, we distinguished between an internal and a public deployment. While the
internal deployment (only including steps (1)-(4) of the deployment strategy) only happened on the

41 https://goharbor.io/

Images
marked for

security check

Image upload
to Harbor
registry

Vulnerability
Scan

Deployment of
trusted images

https://harbor.dare.scai.fraunhofer.de/
https://goharbor.io/

DARE-777413 Public D5.2

 Page | 25

DARE Pre-release testbed at GRNET to ensure a rapid progress, the public deployment included the
provision of new platform releases on the production platform environment at SCAI.

In the following table, we summarized all public platform releases. The releases include the four major
platform releases v1.0, v2.0, v3.0 and v3.6 as well as all minor releases that took place in between.

As described in the deployment strategy, each platform release that was published in the corresponding
GitLab Repository was immediately followed by a platform deployment to the productive DARE
environment. Hence, each major platform release represents one of the four milestones MS3 (1st
Platform Deployment), MS6 (2nd Platform Deployment), MS10 (3rd Platform Deployment), MS12 (final
Platform Deployment).

Table 2: DARE platform releases

October
2019

v1.0 DARE Execution API was integrated in the DARE platform. All necessary files
for Docker and Kubernetes were added to the DARE platform release.

January 2020 v2.0 A new testing environment was included in the platform. Additionally, the
DARE platform’s shared file system was re-organized to be more user
oriented. Users can view/download their generated files by interacting with
the DARE’s execution API.

February
2020

v2.1 In this version, a queue service was added to unburden the workflow
executions/insert sprov-api end point. Additionally, CWL provenance to s-
prov mapping has been improved and sprovflow-viewer search options
have been expanded. Now it is possible to add more search terms in the
filter dialog.

April 2020 v3.0 This version offers innovations in almost all major platform components.
First, the new testing environment (playground module) was updated to run
in a nginx server (instead of gunicorn) and was completely integrated with
the AAI. In a similar way, the Execution API is now based on nginx image and
was integrated with the AAI. Also, the Provenance component had some
important changes, i.e., a more resilient queue, unit tests on
ProvenanceStore class, new search expression on API and in GUI. Finally, the
dispel4py library includes the following changes:

• The -f and -d arguments can be used to define the workflow inputs
as shown in the workflow provenance. The -f argument accepts a
path to a file containing the input dataset in JSON format. The -d
argument accepts the input dataset in JSON format.

• The -f argument has priority over the -d argument.
• Fixed the issue inline provenance definition in the workflow script

is used to create the workflow provenance when the argument –
provenance-config is present. The –provenance-config has priority
over the inline provenance definition now.

• Attention: “s-prov:WFExecutionsInputs” in –provenance-config is
deprecated.

DARE-777413 Public D5.2

 Page | 26

Furthermore, a completely new component, namely the Execution
Registry, has been integrated in the platform. This component serves as
backend to the Execution API handling the Shared File System, and more
specifically, the experiments & runs of the users as well as their uploads.

May 2020 v3.1 From this version on, apart from dispel4py, CWL workflows are supported.
Moreover, a new component was deployed in the platform, i.e., the
workflow-registry. Now, domain developers can register their Docker
containers and CWL workflows in the CWL Workflow Registry and refer to
them by name and version. Client-side functions are provided, which wrap
all the endpoints provided by the workflow-registry component. These
functions can be used to store, update, retrieve and delete Dockers and
workflows. Users can download and modify a demo jupyter notebook (here)
in order to register their own Dockers and workflows. For the CWL
execution, research developers can use the /run-cwl endpoint of the
Execution API, specifying the name and version of the workflow. Thus, the
DARE platform will deploy the execution environment and run the
workflow. As usual, logs and output files are stored in the platform’s Shared
File System.

May 2020 v3.2 In the v3.2 release, the Keycloak AAI has been completely integrated to the
Dispel4py Information Registry. Moreover, various updates in the Execution
API were performed. We have also deployed a new component, as a central
login point, which handles all the sign in actions and validates the provided
access tokens. The dare-login component uses Keycloak as backend to issue
tokens and validate the users. The rest DARE components use the dare-login
for all AAI actions. As usual, client-side helper functions to interact with the
component as well as a GitLab page for technical documentation were
provided.

June 2020 v3.3 In this release multiple issues were fixed, especially regarding the CWL
support.

July 2020 v3.4 The v3.4 release contains various fixes and updates in workflow execution
and monitoring. The dare-login and exec-api components were improved to
handle more requests at the same time during the monitoring of the
workflow execution.

October
2020

v3.5

The v3.5 release contains various fixes and updates in the provenance
component for the CWL workflows. It also contains fixes in the Execution
API and its helper functions as well as integration tests for the components'
APIs.

November
2020

v.3.6 The v3.6 release is the final release and contains various fixes and updates
in the Execution API component. It’s written almost from scratch, has
improved features and easier API. The two Shared File Systems are now
integrated into a single one and all the DARE use cases are updated and
follow the same folder structure (see e.g. Deliverable D6.4).

https://gitlab.com/project-dare/workflow-registry/-/tree/master/workflow_client

DARE-777413 Public D5.2

 Page | 27

4.3 Automation of Deployment
The DARE stack has been designed and packaged so that it is easily deployable on a cloud e.g. in EOSC
infrastructure services. In detail this means that DARE offers ready-to-use infrastructure descriptions
and deployment recipes based on the well-known Ansible42 by Red Hat and Terraform43 by HashiCorp.
Terraform is used to automatically deploy a set of Virtual Machines with the required infrastructure
properties such as CPU, memory, storage and network interfaces on an IaaS Cloud of choice. Supported
Cloud back ends include e.g., AWS, Microsoft Azure and OpenStack.
After the Virtual Machines have been started, Ansible installs and configures the Kubernetes stack, and
starts complementing add-ons, such as networking (based on Calico44) and storage (based on Rook
Ceph45).
Another possiblility to install the needed Kubernetes cluster on e.g. an Openstack cloud or on EOSC is
to make use of Kubespray46, which is a composition of Ansible playbooks, inventory, provisioning tools,
and domain knowledge for generic OS/Kubernetes clusters configuration management tasks.47
The DARE stack running on top of Kubernetes in turn makes extensive use of Helm Charts to package
and manage the Kubernetes resources and applications. This facilitates their usage on Kubernetes
clusters.
The related deployment guidelines including best practices for managing and maintaining a DARE
deployment on the cloud are provided in D5.4- Operational Requirements and Guidelines II.

5 Usage of the DARE Platform environments
During the course of the project, the DARE platform environments primary served for three purposes.
On the one hand as development platform for software and infrastructural components, on the other
hand as testing and training platform to verify functionality and to gather feedback from users of the
two use case communities. Moreover, it was used to promote the project and its results. While the
trainings performed in 2019 primary focused on feedback referring the usability of workflows and
features, the trainings in 2020, that included hands-on sessions, additionally aimed to test functionality
and performance of the underlying infrastructure.

To the public the operational platform environment served as a demonstrator and was not open for
external users. After the project, the platform in the form of an easy deployable software package is
widely available for researchers and their applications.

Development:
The major purpose of the DARE platform environments, especially in the first phase of the project was
to create a space for the development of the individual DARE components and the integration of the
DARE stack. Regarding the infrastructure architecture and the choice of individual infrastructural
components, this e.g. included an evaluation and testing of container orchestration tools like Docker
Swarm and Kubernetes. Due to its rather simple handling, at the beginning of the project, Docker
swarm was the first choice for the DARE platform. However, during the project duration, Kubernetes

42 https://www.ansible.com/
43 https://www.terraform.io/
44 https://www.projectcalico.org/calico-networking-for-kubernetes/
45 https://rook.io/docs/rook/v1.4/ceph-storage.html
46 https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
47 https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

https://www.ansible.com/
https://www.terraform.io/
https://www.projectcalico.org/calico-networking-for-kubernetes/
https://rook.io/docs/rook/v1.4/ceph-storage.html
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

DARE-777413 Public D5.2

 Page | 28

became more attractive and evolved to the industry standard for orchestration. Therefore, DARE
partners performed an extensive evaluation of Kubernetes and finally decided to switch, especially
because of its simple integration with ceph storage (see Rook) and Keycloak.

Also, for the decision on the best suitable solutions for AA, partners evaluated several systems and
protocols like Unity48, Perun49 and Keycloak. Due to the fact, that Keycloak is widely used in most
European infrastructure projects, in research and in industry and because of many useful features
(support of OpenID/Oauth2) it became the preferred candidate. A more detailed discussion on this is
provided in D2.2, chapter 5.2.

To take into account the performance requirements of HPC-applications in a Kubernetes environment
we tried to run message passing (MPI) applications like SPECFEM3D on different container network
options. In this context, network performance is an important aspect, and the project evaluated several
network solutions. First, partners tested Flannel50, which however seemed instable in our
implementations. Following, Weave Net51 and Calico were evaluated. Finally, by weighting up between
performance and functionality, DARE decided to stick to the popular Calico-plugin52 from Calico
Project53.

Testing & Trainings:
To verify functionality, assess performance and stability of the platform, the partners performed simple
tests with tools like e.g. Apache benchmark54 to check that the infrastructure components like e.g.
Jupyterhub and Keycloak behave properly and have acceptable average request times. Exemplarily, in
figure 14 the CPU usage during the testing of Keycloak and Jupytherhub is showcased, in a scenario with
500.000 requests and a concurrency of 150.

Figure 14: CPU usage during Apache benchmark test

A similar test is presented in figure 15, which highlights the CPU usage during a “long-term” stress test
with 5mio requests to both portals and a concurrency of 600.

48 https://unity.com
49 https://perun.network/
50 https://kubernetes.io/docs/concepts/cluster-administration/networking/#flannel
51 https://www.weave.works/docs/net/latest/overview/
52 https://github.com/projectcalico/cni-plugin
53 https://www.projectcalico.org/calico-networking-for-kubernetes/
54 https://httpd.apache.org/docs/2.4/programs/ab.html

https://unity.com/
https://perun.network/
https://kubernetes.io/docs/concepts/cluster-administration/networking/#flannel
https://www.weave.works/docs/net/latest/overview/
https://github.com/projectcalico/cni-plugin
https://www.projectcalico.org/calico-networking-for-kubernetes/
https://httpd.apache.org/docs/2.4/programs/ab.html

DARE-777413 Public D5.2

 Page | 29

Figure 15: CPU usage during “long term” stress test

Both tests have shown that, in both scenarios, the CPU resources are not fully utilised.

In addition to such standard tests and in advance of training events partners also performed more
realistic tests and used test-user accounts simultaneously running jobs to test whether the system
behaves stabile and the jobs finish successfully. E.g., prior to the volcanology summer school at KIT on
24 July 2020 partners performed a test with the following steps:

1. Twelve test-
users execute in
parallel the
simulation step
(each user has a
launcher and a
worker container)

DARE-777413 Public D5.2

 Page | 30

3. Resulting
netcdf
files for all
users have
successfull
y been
produced.

3. For every user
the execution log
files exist.

DARE-777413 Public D5.2

 Page | 31

4. All users
simultaneously
perform the
plotting step
(each user has a
launcher and two
worker
containers)

5. After plots are
computed,
resulting plotfiles
and referring
logfiles are
available

To check the capacity utilization of the DARE system and observe the requirements of the individual
components of the platform, especially during specific test runs and trainings, partners kept an eye on
the monitoring output.

DARE-777413 Public D5.2

 Page | 32

Figure 16 shows the CPU usage of different platform components, recorded during the week after the
webinar: Introduction to the DARE platform - Focusing on Climate and Atmospheric Sciences (October
16, 2020), where all participating users had access to the system and were able to test the DARE
applications.

Figure 16: CPU usage during DARE training event

Figure 17 shows the CPU and memory usage, during the run of different SPECFEM3D simulations
(seismology test case, Deliverable D6.4) with up to 24 cores. It is noticeable that during these
simulations the CPU usage temporally exceeds the usage of 30 CPUs, which indicates CPU consumption
by platform processes.
Memory consumptions by a heavy numerical simulation like SPECFEM3D seems to be adequate
compared to a run in a run on bare metal.

Figure 17: CPU/Memory usage during specfem simulations

Relatively few resources are needed by the DARE components. In figure 18, you can see that during the
deployment process as expected the exec-api starting all Kubernetes jobs needs most CPU power and
is running on more than one core (here 3).

DARE-777413 Public D5.2

 Page | 33

Figure18: CPU/Memory usage of DARE components during deployment

In the stateful mode the CPU usage of the Kubernetes services are marginal. Interesting for us was the
minimal resource consumption of the DARE sprov-db provenance service during an application run like
SPECFEM3D.

DARE-777413 Public D5.2

 Page | 34

Figure 19: CPU/Memory usage of stateful DARE components

Overall, it can be concluded that the system's resource consumption is low. Even the Provenance
service steals nearly nothing from the actual application. Furthermore, the virtualized infrastructure
with integrated virtual shared storage runs stable and efficient, and even in multi-user operations it
runs with a reasonable resource consumption. Since the infrastructure stack is cloud native, it can be
used like a scalable, virtual HPC system even allowing the run for large MPI applications.

DARE-777413 Public D5.2

 Page | 35

6 Conclusion
In this deliverable, we reported on the work performed in the scope of WP5, which was responsible for
the provision and management of the cloud environments made available for the DARE platform.

To this extent, we initially described the cloud-ready DARE platform stack focusing on the infrastructural
components and tools like e.g., the AA mechanism and gave a rough description of the cloud resources
mobilized for DARE and provisioned at SCAI and GRNET. With the decision to rely on an architecture
based on orchestrated micro services, DARE aimed to develop a packaged development kit easily
deployable on cloud resources especially having in mind the EOSC. Moreover, we described the
platform deployment strategy followed by the project and summarized the public releases and
deployments. Finally, we described the main usage purposes of the DARE environments tailored to the
needs of the climate and seismology use cases, and the additional volcanology test case, and presented
some monitoring and testing results of the operational DARE environment provided at SCAI. This
demonstrated that the provided platform is stable, efficient and performs with reasonable resource
consumption.

In retrospect, it was a good decision to follow the above described strategies and to provide two
separate platform environments. Besides the fact that the rapid provision of the testbed gave the
developers access to a development environment at an early stage in the project, this approach also
facilitated the co-development of the individual components. While partners from the use cases, were
already able in the testbed environment to try out and work with newly developed and not completely
stable beta-features of the DARE stack, others were able to rely on a stabile variant of the DARE
platform to optimise their workflows or to perform trainings.

Also the decision to rely on orchestrated micro services facilitated the independent development of the
needed individual components in DARE. However, one should not underestimate that a high level of
communication between all partners was required to make sure that all components cooperate
effectively and to ensure that an update to one service didn’t break some others functionality. For
future projects, it therefore seems advisable to place even greater emphasis on testing the individual
operating components and their interaction.

One of the particularly challenging parts in WP5 was e.g. to meet the sometimes contradictory
requirements of a completely integrated platform (operational environment at SCAI) and those of a
desired locally installable environment. For example, in connection with the choice and integration of
an appropriate AA solution. Also the extremely fast-changing universe around containers and
orchestration was quite challenging and led to the need of reworking developed solutions. In some
cases solutions developed in DARE even became superfluous.

	1 Introduction
	1.1 Purpose and Scope
	1.2 Approach and relation with other Work Packages and Deliverables
	1.3 Methodology and Structure of the Deliverable
	2 Platform Infrastructure Development
	3 Infrastructure and Platform
	3.1 Cloud-Ready Platform
	3.2 Testbed/Pre-Release Infrastructure
	3.3 Productive DARE Environment
	3.4 Relation to EOSC

	4 Platform Deployment
	4.1 Deployment Strategy
	4.2 Deployment Schedule
	4.3 Automation of Deployment
	5 Usage of the DARE Platform environments
	6 Conclusion

