
DARE-777413 Public D5.4

 Page | 1

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European e-Infrastructures”

 D5.4 Operational Requirements and Guidelines II

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Deliverable D5.4 Operational Requirements and Guidelines II

Work package WP5: Platform Operation and Maintenance

Tasks involved

T5.1: Provision of Relevant Cloud Infrastructure
T5.2: Provision of Pre-release Testbeds
T5.3: Deployment Strategy and Platform Operation
T5.4 Operational Requirements Specifications and Roadmap

Type R: Document, report

Dissemination Level PU = Public

Due Date 31/12/2020

Submission Date 30/12/2020

Status Draft

Editor(s) Stavros Sachtouris (GRNET)

Contributor(s) André Gemünd (SCAI)

Reviewer(s) Alessandro Spinuso (KNMI)

DARE-777413 Public D5.4

 Page | 2

Document description

This deliverable reports on the set of guidelines and best practices for
managing and maintaining a DARE platform deployment on the cloud,
regarding infrastructure, A/A, monitoring, security and recovery issues
as well operational guidelines. It is a follow up to D5.3, the focus of
which was on providing suggestions for developing the platform and
experimenting with available solutions as DARE is being built. The
present document provides guidelines and instructions for the
operators, developers and scientific domain experts on how to
operate a functional and tested platform.

DARE-777413 Public D5.4

 Page | 3

Document Revision History

Version Date Modifications Introduced
Modification Reason Modified by

1 31/10/2020 Initial Structure S. Sachtouris (GRNET)
2 14/12/2020 Context and generic

info on each chapter
S. Sachtouris (GRNET)

3 15/12/2020 Production specifics A. Gemünd (SCAI)
4 17/12/2020 Infrastructure,

Capacity
S. Sachtouris (GRNET)

5 19/12/2020 A/A, Monitoring S. Sachtouris (GRNET)
6 20/12/2020 First draft S. Sachtouris (GRNET)
7 22/12/2020 Second Draft S. Sachtouris (GRNET)
8 23/12/2020 Finalized S. Sachtouris (GRNET)

DARE-777413 Public D5.4

 Page | 4

Executive Summary

This deliverable reports on the set of guidelines and best practices for managing and maintaining a
DARE platform deployment on premises or on the cloud. Specifically, it contains installation,
configuration and maintenance instructions and best practices regarding infrastructure, container
management, networking, storage, scaling, authentication, security and disaster recovery, as
foreshadowed in D5.31. This information is derived from reliable vendor resources as well as the
experience of developing, maintaining and using the testbed and production platforms described in
D5.22.

1 D5.3 Operational Requirements and Guidelines I,
 http://project-dare.eu/wp-content/uploads/2019/03/D5.3-Operational-Requirements-and-Guidelines-I_final_draft.pdf
2 D5.2 Platform Infrastructure, Usage & Deployment II

DARE-777413 Public D5.4

 Page | 5

Table of Contents

Introduction 9

Platform architecture overview 10

Infrastructure provisioning 11

IaaS provisioning 12

Terraform and OpenStack 13

Synnefo with kamaki and ansible 14

Post-build provision 16

Setting up Kubernetes 16

Setting up Platform Components 17

Helm/Tiller 18

MPI operator 18

Rook CEPH 19

NginX Ingress 19

Cert-manager 20

Keycloak 20

Deploy all 21

Capacity planning and scaling 21

Computational Power 22

Storage 23

Authentication and Authorization 25

Monitoring 26

Setup the stack 27

Annotate pods 28

Alerts 29

Security and safety 29

Firewall 30

Harbor 30

Failure prevention and recovery 31

Conclusion 32

Appendix 34

K8s Network 34

mpi-operator-0.1.0/deploy/3-mpi-operator.yaml 38

mandatory.yaml 38

DARE-777413 Public D5.4

 Page | 6

keycloak-values.yaml 43

dare-login-dp.yaml 45

alertmanager.yaml 46

DARE-777413 Public D5.4

 Page | 7

List of Terms and Abbreviations

Abbreviation Definition
DARE Delivering Agile Research Environments
K8s Kubernetes
IaaS Infrastructure as a Service
WaaS Workflow as a Service
DRB Dare-specific Knowledge Base
P4 Protected Pervasive Persistent Provenance
MPI Message Passing Interface
PE Process Element
CWL Common Workflow Language
GKE Google K8s Engine
EKS Amazon Elastic K8s Services
HPC High Performance Computing
VM Virtual Machine
LTS Long Term Support
TLS Transport Layer Security
SSH Secure Shell
CLI Command Line Interface
AWS Amazon Web Services
OS Operating System
KVM Kernel-based Virtual Machine
ACME Automated Certificate Management

Environment
SSO Single Sign On
RBD RADOS Block Device
PV Persistent Volume
PVC Persistent Volume Claim
EOSC European Open Science Cloud
EGI European Grid Initiative
EUDAT European Association of Databases for

Education and Training
PPK Private-Public Key
SAML Single Assertion Markup Language
RBAX Role-Based Access Control
DB Database

DARE-777413 Public D5.4

 Page | 8

DARE-777413 Public D5.4

 Page | 9

1 Introduction
This document is intended as a collection of instructions, guidelines and suggestions for deploying and
operating the DARE platform. It must be thought of as the continuation of D5.3 (“Operational
Requirements and Guidelines I”) which was composed at the beginning of the project, when the
platform was still in the planning face, while D5.4 is delivered at the end of the DARE project. In the
former, information was acquired mostly from sources related to industry standards on cloud
computing, container management, etc., while in the later most of the information was collected while
developing and trying out the platform.

The DARE platform sprang out from the collaboration between experts in diverse fields i.e., Computer
Science, Seismology and Meteorology. Since its conception it was designed as a distributed platform,
consisting of containerized applications and services, living on the cloud. Its target users are scientific
communities in need of processing high loads of structured data, while storing provenance information
in a way meaningful to these communities and usable by future processes.

Most suggestions and guidelines from D5.3 acted as the basis for building the platform. In D5.3 it is
proposed to follow a cloud-native approach, which was adopted by DARE designers and developers to
a great extent. In specific, it was proposed to rely on containers for handling the auxiliary services, as
well as to support novel services and to run processes. Kubernetes (K8s)3 was elected as the most
suitable candidate from a selection of mature and industry-hardened container management
technologies, the Prometheus4-Alertmanager5-Grafana6 stack was chosen for monitoring, tools like
kubespray7 and minikube8 were often used to spawn DARE instances for experimentation and
development, while the adopted networking solution (Calico9) was also proposed there. What's more,
the platform was built with an IaaS or a K8s-ready cluster in mind, as well as in a way that conforms
with EOSC standards and tooling.

There are some aspects, though, where the guidelines were not followed. For instance, Keycloak10 was
selected as the authentication/authorization (A/A) handler, and Rook CEPH11 as the storage layer, since
they satisfied the requirements and needs of the platform. The user and role policies constitute the
most notable diversion. The initial suggestion was an elaborate but complicated scheme, aimed
primarily to support the requirements of a public service. After it was suggested to the scientific
communities, though, their feedback directed us towards an approach of lower complexity. As the
project evolved, it became apparent that the platform was primarily targeted to scientific communities
and the institutions that foster them, thus it was necessary to simplify access and minimize operational
load so that DARE would become an attractive solution to them.

3 https://kubernetes.io/
4 https://www.prometheus.io/
5 https://github.com/prometheus/alertmanager
6 https://grafana.com/
7 https://kubespray.io/
8 https://minikube.sigs.k8s.io/
9 https://kubernetes.io/docs/tasks/administer-cluster/network-policy-provider/calico-network-policy/
10 https://www.keycloak.org/
11 https://rook.io/docs/rook/v1.5/ceph-storage.html

DARE-777413 Public D5.4

 Page | 10

At the beginning of the project, it was unclear whether the platform would evolve to be (a) a service
maintained by a team of informational technology experts and offered as a service to a wide range of
scientific federations, or (b) a tool to be installed and maintained on premises of various institutions
and organizations. In the following, when we refer to DARE installations and in order to distinguish
between the two cases, we use the terms “public installation” and “local installation” respectively.
DARE focuses primarily on local installations, but public ones are supported as well.

1.1 Platform architecture overview
From a functional perspective, the DARE platform is build over three pillars12, namely a Workflow as a
Service (WaaS) functionality, a Dare-specific Knowledge Base (DRB) and a set of Provenance tools
(Protected Pervasive Persistent Provenance or P4). Each of these groups of functions is provided by
software and services that are either adopted by or developed for DARE.

From a systemic perspective, the platform consists of software components bundled in containers,
living in a Kubernetes (K8s) cluster. The decision to rely on K8s for the orchestration, management and
operations of all DARE components was proposed and taken early13, so that most of the system design,
development process, testing and training could be based on safe assumptions regarding the underlying
infrastructure interface and offerings.

Figure 1: The structure and main components of the current DARE platform14

12 See D2.2 “DARE Architecture and Technology Report”, chapter 4 “Architecture and Implementation”
13 E.g., D5.3 “Operational Requirements and Guidelines II”
14 From D2.2 “DARE Architecture and Technology Report”, chapter 4 “Architecture and Implementation”

DARE-777413 Public D5.4

 Page | 11

In the following we group the components of the platform in two groups, namely the “DARE
components” and the “Platform components”. The term “DARE components” refers to software used
to process and store data, metadata, provenance information or the results of this process, which is
either developed in the scope of the project or configured to serve the aforementioned needs e.g., for
workflow execution, indexing, searching etc. The term “Platform components” refers to software used
to build the supporting infrastructure e.g. for container management, monitoring, networking, storage,
security, availability etc. The DARE components can be further grouped into management components
(APIs, provenance, registries) and execution environments (workflows and applications).

A detailed list and description of the DARE components can be found in D2.215.The platform adopts and
features a variety of well known tools for scientific data processing, indexing, searching etc., like
JupyterHub16, SemaGrow17 or Exareme18. A lot of tools have been developed in the context of the
project. The ones summarized below are picked for their significance in the platform ecosystem, and
also to demonstrate the diversity of the systemic requirements.

DARE architecture relies on the Message Passing Interface (MPI) protocol (the MPI operator being a
platform component) and dispel4py (a DARE component) which relies on MPI for implementing
workflow execution. MPI is a reliable and well known parallelization interface which can be configured
to utilize a group of connected nodes in the service of a workflow operation. Dispel4py maps graphs of
Process Elements (PE) to MPI in order to schedule them on individual nodes. The PEs are stored in a
separate registry (dispel4py-registry and CWL19 workflow registry). An MPI network is being built on
top of the underlying network infrastructure when needed, so that it can be ported from and to other
platforms. A feature of great value is a provenance functionality, consisting of s-ProvFlow. S-ProvFlow
is developed in the context of DARE and features the acquisition, storage, exploration and visualization
of provenance data produced at run-time by DARE processes.

15 D2.2 DARE Architecture and Technology report
16 https://jupyter.org/hub
17 http://semagrow.github.io/
18 http://madgik.github.io/exareme/
19 https://www.commonwl.org/

DARE-777413 Public D5.4

 Page | 12

2 Infrastructure provisioning
The DARE platform relies on a K8s cluster, which can be deployed over various cloud offerings i.e., IaaS
systems (like GRNET’s Synnefo20-powered okeanos-knossos21, or SCAI’s OpenStack22 cluster) or cloud-
based K8s solutions (e.g., Google Kubernetes Engine/GKE23, Amazon Elastic Kubernetes Service/EKS24).
The first solution allows institutions to deploy and maintain their own version of the platform on their
own premises, given that they have access on an IaaS cloud. The advantages of an on-premises solution
is full control over sensitive data as well as the ability to utilize computational and data resources (e.g.,
HPC clusters, knowledge bases, etc.) available internally to the institution. The advantage of a cloud-
based cluster is the simplification of the deployment process and the lower maintenance cost (backup,
updates, support, etc.).

The term “infrastructure provisioning” includes the physical or cloud resource allocation as well as the
installation of the underlying platform (K8s) and the Platform components. Although from a
deployment perspective, Platform and DARE components share a lot of similarities; the both live in
containers managed by K8s. From a functional perspective, though, Platform components constitute
the scaffolding holding the DARE components into place and allowing them to form a meaningful and
usable service. For this reason, we consider Platform components as part of the infrastructure, along
with the physical layer and the K8s installation.

2.1 IaaS provisioning
Provisioning an IaaS for DARE equals provisioning for the underlying K8s cluster and the MPI network.
A K8s cluster requires at least one host as a master. A host is either a physical server or a VM, with the
following minimum requirements:

- K8s master: 1.5 core, 2GB RAM
- K8s node: 0.7 cores, 1GB RAM

The resource allocation can be automated with specialized tools. The choice and configuration of tools
depends heavily on the special characteristics of the underlying IaaS. The first step is the allocation of
a few nodes with the desired characteristics, a secure access method for the operators, floating IPs and
a common network. It is suggested to keep record of the process e.g., in a script used to allocate the
resources. Practices and tooling for IaaS have been adequately covered in D5.3.

DARE was developed on two IaaS clusters: a Synnefo cluster (okeanos-knossos) offered by GRNET25 as
a testbed and an OpenStack cluster offered by SCAI26 as a production environment. Both systems
provide compute, network and storage resources in the form of virtual machines (VMs), which were
provisioned with Terraform27 in the case of OpenStack, or with kamaki-ansible-role28 in the case of

20 https://synnefo.org
21 https://okeanos-knossos.grnet.g
22 https://www.openstack.org/
23 https://cloud.google.com/kubernetes-engine/
24 https://aws.amazon.com/eks/
25 See D5.2, chapter 3.2
26 See D2.2, chapter 3.3
27 https://www.terraform.io/
28 https://github.com/saxtouri/kamaki-ansible-role/

DARE-777413 Public D5.4

 Page | 13

Synnefo. The testbed was provisioned with relatively low resources (3 VMs of 16 cores, 16GB RAM and
70GB storage) with more available if needed. The production environment was initially deployed on
similar resources which were scaled up when there was demand (e.g., training sessions).

In the following we showcase the provision of infrastructure with automation tools fit for specific IaaS
services. DARE has been tested on hosts running Ubuntu 16.04 LTS29, connected on the same network.

Terraform and OpenStack
Terraform30 is a provisioning tools that works well with various IaaS systems, including OpenStack31.
The following terraform script allocates and builds the infrastructure for a small but functional K8s
cluster. The three VMs are declared towards the end.

Terraform script example to provision an OpenStack Cluster for K8s

Configure the OpenStack Provider provider "openstack"
{
 user_name = "admin"
 tenant_name = "admin"
 password = "pwd"
 auth_url = "http://example.org:5000/v2.0"
 region = "RegionOne"
}

Ubuntu 16.04 LTS as default
variable "image" {
 default = "Ubuntu 16.04"
}

Medium-sized VM as default
variable "flavor" {
 default = "m1.medium"
}

Use this private key as default (injected in VM on build)
variable "ssh_key_file" {
 default = "~/.ssh/id_rsa.dare"
}

Username as default
variable "ssh_user_name" {
 default = "ubuntu"
}

Setup private network
resource "openstack_networking_subnet_v2" "dare_net" {
 name = "dare_net"
 network_id = "${openstack_networking_network_v2.terraform.id}"
 cidr = "10.0.0.0/24"
 ip_version = 4
 dns_nameservers = ["1.2.3.4","5.6.7.8"]
}

29 http://releases.ubuntu.com/16.04/
30 https://www.hashicorp.com/products/terraform
31 https://registry.terraform.io/providers/terraform-provider-openstack/openstack/latest/docs

http://example.org:5000/v2.0

DARE-777413 Public D5.4

 Page | 14

resource "openstack_networking_router_v2" "dare_net" {
 name = "dare_net"
 admin_state_up = "true"
}

resource "openstack_networking_router_interface_v2" "terraform" {
 router_id = "${openstack_networking_router_v2.terraform.id}"
 subnet_id = "${openstack_networking_subnet_v2.terraform.id}"
}

resource "openstack_compute_floatingip_v2" "terraform" {
 pool = "${var.pool}"
 depends_on = ["openstack_networking_router_interface_v2.terraform"]
}

Allocate 3 equal VMs
resource "openstack_compute_instance_v2" "kubernetes_1" {
 name = "kubernetes_1”
 image_name = "${var.image}"
 flavor_name = "${var.flavor}"
 key_pair = "${openstack_compute_keypair_v2.terraform.name}"
 floating_ip = "${openstack_compute_floatingip_v2.terraform.address}"
 network {
 uuid = "${openstack_networking_network_v2.terraform.id}"
 }

 provisioner "remote-exec" {
 connection {
 user = "${var.ssh_user_name}"
 key_file = "${var.ssh_key_file}"
 }
}

resource "openstack_compute_instance_v2" "kubernetes_2" {
 name = "kubernetes_2”
 …
}

resource "openstack_compute_instance_v2" "kubernetes_3" {
 name = "kubernetes_3”
 …
}

Note how access to VMs is controlled with SSH. This key is different to the TLS keys used by K8s to
securely interconnect its parts. It is, instead, the master-key that gives superuser access on the
infrastructure. In this case, the “ubuntu” user of each VM is sudo-priviledged.

Synnefo with kamaki and ansible
On Synnefo clusters, terraform would not work out of the box, although some scripts could work with
some adjustments. It is, instead, suggested to rely on kamaki32, a Command Line Interface (CLI) and
python library for Synnefo, combined with ansible33, using the kamaki-ansible-role34, which was
developed in the context of DARE.

32 https://github.com/grnet/kamaki
33 https://www.ansible.com/
34 https://github.com/saxtouri/kamaki-ansible-role

DARE-777413 Public D5.4

 Page | 15

Here is an ansible playbook to prepare the same resources as the ones in the Terraform script in
“Terraform and Openstack” subsection above.

tasks:
- name: Provision DARE infra
 hosts: localhost
 tasks:
 - import_role:
 name: kamaki-ansibe-role
 - name: Authenticate cloud
 cloud:
 url='https://example.org/identity/v2.0'
 token='MY-SYNNEFO-TOKEN'
 project_id='MY-PROJECT'
 register: cloud
 - name: Create PPK
 keypair:
 cloud={{ cloud }}
 name='My keypair'
 register: ppk
 - name: Save private key
 copy:
 # Only if this is a new key
 content={{ ppk.keypair.private_key }}
 dest=~/.ssh/id_rsa.dare
 register: saved_key
 - name: Create private network
 network:
 cloud={{ cloud }}
 name='dare_net'
 dhcp=True
 cidr='10.0.0.0/24'
 register: dare_net
 - name: Create IP
 public_ip:
 cloud={{ cloud }}
 register: ip
 - name: Create Kubernetes 1
 server:
 cloud={{ cloud }}
 name='Kubernetes_1'
 flavor_id=260
 image_id='051669a1-835a-4e01-995e-1d21c74839c7'
 public_ip={{ ip }}
 network={{ dare_net }}
 keypair={{ ppk }}
 register: kubernetes_1
 - name: Create Kubernetes 2
 server:
 ...
 - name: Create Kubernetes 3
 server:
 ...

Note that flavor_id and image_id are selected by the user using the Synnefo mechanisms for listing
available profiles to correspond to a medium-sized machine (flavor) running Ubuntu 16.04 LTS (image).

DARE-777413 Public D5.4

 Page | 16

Post-build provision
Nodes must support containers. In DARE we opted for Docker35 as the underlying container framework.
The preparation of a node for containers depends on the virtualization setup and the chosen OS image,
but the vast majority of IaaS offerings fully support containers. Details on how to prepare a system for
Docker can be found in official Docker documentation36.

Trivial post-build operations (e.g., OS updates) should also be applied at this point. It is advised for these
operations to be included in the original provisioning script.

In our example (Ubuntu 16.04) this is the process:

Update system
sudo apt update && sudo apt upgrade -y
Install docker
sudo apt install docker.io
Enable docker
sudo systemctl enable docker

2.2 Setting up Kubernetes
Kubernetes has become an industry standard since the submission of D5.3, two years ago. Still, the
architecture details and tools of that document are still relevant. Since then, K8s was stabilized and its
tools became trustworthy. As a consequence, auxiliary tooling used to setup and configure kubernetes
is not always needed.

In principle, any standard K8s cluster could support the DARE platform, as long as enough resources are
available, interconnected and ready to support containers. There are various tools to deploy
Kubernetes on such a system, the most mature of which have been surveyed in D5.3. In the context of
DARE, we have relied from time to time on kubespray, minikube and, finally, the tools shipped with K8s
itself (kubeadm, kubectl). As the DARE platform became more stable, so did the built-in K8s tools, which
are the currently suggested approach for setting up k8s.

Kubespray is a collection of configuration templates and tools organized in ansible playbooks,
provisioning tools and domain knowledge for generic OS/Kubernetes clusters configuration
management tasks. It can connect to the most popular commercial IaaS offerings (e.g., AWS, Azure) as
well as OpenStack clusters and it supports Terraform as an infrastructure provisioner.

Minikube is a turn-key solution for setting up K8s locally with a single command. It can run on a Docker-
ready host or on virtualization technologies (e.g., KVM37, VirtualBox38, etc.). It was useful on testbed as
an easy way to start a cluster for interim installations, as well for local experiments. After the initial
setup, additional resources had to be added to the cluster with standard K8s tools (kubeadm or
kubectl).

35 https://www.docker.com/
36 https://docs.docker.com/get-docker/
37 https://www.linux-kvm.org/
38 https://www.virtualbox.org/

DARE-777413 Public D5.4

 Page | 17

We settled for the tools included with the main K8s offering. In the following we showcase the
installation of an adequately provisioned cluster like the ones used on testbed, production or the
examples in “IaaS provisioning” subsection. The script starts with the installation of the tools
themselves, as well as kubelet, which is a mandatory component of a K8s cluster.

Install K8s:

Add Kubernetes signing key
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add

Add Kubernetes Repository for Ubuntu 16.04 (Xenial)
sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"

Install Kubeadm
sudo apt install kubeadm=1.15.3-00 kubectl=1.15.3-00 kubelet=1.15.3-00

Initialize Kubernetes on the master node
sudo kubeadm init

start using your cluster
mkdir -p $HOME/.kube & sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config & sudo
chown $(id -u):$(id -g) $HOME/.kube/config

Deploy a Pod Network through the master node
kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64
| tr -d '\n')"

Run
kubectl taint nodes --all node-role.kubernetes.io/master-

A copy of the file from https://cloud.weave.works/k8s/net can be found in the appendix (“K8s
Network”)

By following the examples presented so far, we end up with a still unconfigured but functional K8s
cluster. At this point, operators may find it useful to install kubectl on their machine and use it to control
the cluster remotely. After the installation, the file ~/.kube/config has to be copied from the initial
cluster node (e.g., “kubernetes_1”) to the operators’ host.

2.3 Setting up Platform Components
Platform components include the networking (Calico) and storage (Rook CEPH) handlers, Routing
(NginX Ingress39) and Security (cert-manager, Harbor40), the A/A mechanism (Keycloak), Database
Management Systems (PostgreSQL41, Mongodb42, Virtuoso43) and index services (SOLR/Lucene44) and

39 https://kubernetes.github.io/ingress-nginx/
40 https://goharbor.io/
41 https://www.postgresql.org/
42 https://www.mongodb.com/
43 https://github.com/openlink/virtuoso-opensource
44 https://lucene.apache.org/solr/

https://cloud.weave.works/k8s/net

DARE-777413 Public D5.4

 Page | 18

MPI support (mpi-operator).

A helpful list of scripts and configurations can be found in the dare platform, so it is a good idea to get
a copy of the source from gitlab:

$ git clone https://gitlab.com/project-dare/dare-platform.git

Helm/Tiller
All these components are installed and managed on K8s with Helm/Tiller. It can be thought of as a
package manager for K8s. Helm is based on yaml files (charts) containing installation details and
configuration properties. The tool keeps track of installed and deployed versions and allows the
management of upgrades for each individual chart.

For DARE, the version 3.3.1 has to be downloaded from https://github.com/helm/helm/releases and
the binary has to be placed manually at the path (e.g., /usr/local/bin), as shown below.

Download, unpack and install release package
$ wget https://get.helm.sh/helm-v3.1.1-linux-amd64.tar.gz
$ tar xf helm-v3.1.1-linux-amd64.tar.gz
$ sudo mv linux-amd64/helm /usr/local/bin/

create service account
$ kubectl create serviceaccount -n kube-system tiller

create role for RBAC
$ kubectl create clusterrolebinding tiller-binding --clusterrole=cluster-admin --
serviceaccount kube-system:tiller

Update package sources
$ helm repo update

The last step will likely fail, since there are no helm packages installed yet.

MPI operator
To support MPI, download version 0.1.045 of the MPI operator and unzip it. Edit the file “mpi-operator-
0.1.0/deploy/3-mpi-operator.yaml” so that the version of the two images is set to 0.1.0 since the MPI-
based executions of the platform require this exact version to function. The resulting find can be found
in the appendix (“mpi-operator-0.1.0/deploy/3-mpi-operator.yaml”). The operator can be loaded with
“kubectl create”.

$ for script in mpi-operator-0.1.0/deploy/*.yaml; do
 kubectl create -f $script;
done;

45 https://github.com/kubeflow/mpi-operator/archive/0.1.0.tar.gz

https://gitlab.com/project-dare/dare-platform.git
https://github.com/helm/helm/releases

DARE-777413 Public D5.4

 Page | 19

Rook CEPH
The storage layer is handled with Rook, which can offer a CEPH block storage implementation. The
platform depends on running the 0.8 release from the Rook repository46. Rook example scripts for CEPH
on kubernetes are adequate for our purposes. At the end, we need to set “rook-ceph-block” as default.

$ git clone https://github.com/rook/rook.git
$ cd rook && git checkout release-0.8
$ cd cluster/examples/kubernetes/ceph
$ kubectl create -f operator.yaml
$ kubectl create -f cluster.yaml
$ kubectl create -f filesystem.yaml
$ kubectl create -f storageclass.yaml
Set rook-ceph-block as default storage class
$ kubectl patch storageclass rook-ceph-block -p \
'{"metadata":{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

NginX Ingress
DARE relies on Calico to handle networking. K8s is instructed to use the Calico plugin at a later stage,
when applying the general cluster configuration. At this point, though, we can configure an Ingress
service to handle HTTP/S traffic with Ngin.

For that we need to create an “ingress-deployment/nginx-ingress.yaml” file

kind: Service
apiVersion: v1
metadata:
 name: ingress-nginx
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
spec:
 externalTrafficPolicy: Local
 type: LoadBalancer
 selector:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 ports:
 - name: http
 port: 80
 targetPort: http
 - name: https
 port: 443
 targetPort: https

We also need to get the mandatory configurations47 (“mandatory.yaml” in the appendix), which must
be applied first:

46 https://github.com/rook/rook.git
47 https://raw.githubusercontent.com/kubernetes/ingress-
nginx/130af33510882ae62c89277f2ad0baca50e0fafe/deploy/static/mandatory.yaml

https://github.com/rook/rook.git

DARE-777413 Public D5.4

 Page | 20

kubectl apply -f mandatory.yaml
kubectl apply -f ingress-deployment/nginx-ingress.yaml

Cert-manager
The platform security policy requires the issuance and management of multiple X.50948 certificates for
various purposes, most of which regard the internals of K8s. Cert-manager provides this functionality
“out of the box”, while it is loaded with features necessary for maintaining security as the service grows.

Cert-manager can be configured to support either the “Let’s Encrypt” Certification Authority49 or other
certificate authorities (including internal ones) or even self signed certificates. To maintain certificates
for the externally reachable services and pages, DARE uses the “Let’s Encrypt” through its ACME
protocol50. The Cert-Manager addon automates this process even further so that certificates are
automatically issued, configured in the ingress and updated based on annotations in K8s descriptors.
For installation, we use the official Helm package from Helm hub51.

Install certificate manager

install custom resource definitions
$ kubectl apply --validate=false -f 00-cards.yaml52

Add the Jetstack Helm repository
$ helm repo add jetstack https://charts.jetstack.io

Install the cert-manager helm chart
$ helm install cert-manager --version v0.14.0 jetstack/cert-manager

Install the letsencrypt ClusterIssuer (careful: needs customization!)
$ kubectl apply -f letsencrypt-prod.yaml53

Keycloak
Authentication and Authorization is managed by Keycloak, an A/A tool with features like turn-key user
management, Single Sign On (SSO) or authentication through federations. The latest version of DARE
relies on Keycloak 8.0.0 which is installed with Helm. It is advised to set up Keycloak after cert-manager,
in order to ensure secure configuration over HTTPS.
An example of the file “keycloak-values.yaml” can be found in the appendix and also on DARE gitlab
repository54.

Add codecentric package source and update package sources.
$ helm repo add codecentric https://codecentric.github.io/helm-charts

48 https://www.itu.int/rec/T-REC-X.509
49 https://letsencrypt.org/
50 https://tools.ietf.org/html/rfc8555
51 https://hub.helm.sh/charts/jetstack/cert-manager
52 https://raw.githubusercontent.com/jetstack/cert-manager/release-0.14/deploy/manifests/00-crds.yaml
53 https://raw.githubusercontent.com/kubernetes/k8s.io/master/cert-manager/letsencrypt-prod.yaml
54 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/keycloak-values.yaml

https://letsencrypt.org/
https://tools.ietf.org/html/rfc8555)
https://hub.helm.sh/charts/jetstack/cert-manager)

DARE-777413 Public D5.4

 Page | 21

$ helm repo update

Install Keycloak Helm Chart
$ helm install keycloak -f keycloak-values.yaml --version 8.0.0 codecentric/keycloak

To redeploy keycloak:
$ helm upgrade keycloak -f keycloak-values.yaml codecentric/keycloak

The output of the above execution will contain information on how to connect to Keycloak from a
kubernetes host, or how to expose Keycloak UI through a port for external admin access. Typically
Keycloak admin panel is located at “/auth/” url path.

An administrator must open /auth from a browser and create a new realm named “dare”. To apply the
standard DARE policy, In the new realm register the “dare-login” component as a client, use
“confidential” as strategy and save the secret. This is copied in “dare-login-dp.yaml55” (also in the
appendix) as the value of “CLIENT_SECRET”. Next, go back to Keycloak panel, create an admin
(username “admin” in our example) and a password and update the values in “dare-login-dp.yaml” for
“ADMIN_USERNAME” and “ADMIN_PASSWORD” respectively.

$ kubectl create -f dare-login-dp.yaml
$ kubectl create -f dare-login-svc.yaml56
$ kubectl expose deployment dare-login --type=NodePort --name=dare-login-public

Deploy all
A set of useful scripts (deploy, redeploy, cleanup) are located in “dare-platform/k8s” downloaded
earlier. To get the platform in a functional state, run the deploy script and expose the deployments.
This includes core DARE components.

$./deploy.sh
$ kubectl expose deployment d4p-registry --type=NodePort --name=d4p-registry-public
$ kubectl expose deployment dare-login --type=NodePort --name=dare-login-public
$ kubectl expose deployment exec-api --type=NodePort --name=exec-api-public
$ kubectl expose deployment exec-registry --type=NodePort --name=exec-registry-public
$ kubectl expose deployment playground --type=NodePort --name=playground-public

55 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-dp.yaml
56 https://gitlab.com/project-dare/dare-platform/-/blob/master/k8s/dare-login-svc.yaml

DARE-777413 Public D5.4

 Page | 22

3 Capacity planning and scaling
The type of resources required for the K8s installation are computational (cores, RAM), network
(external IPs and inter-VM connectivity) and disk storage. Some of the VMs (at least one, preferably
two or more) will take the role of supporting the K8s system itself. The rest will be used as K8s nodes.
The amount of resources per VM depends on the requirements and expectations of the process
element (PE). If the expected workloads contain computationally intensive PEs, at least some of the
node VMs must be provisioned with more CPU, RAM and/or storage.

The amount of resources required for scientific data processing cannot be easily anticipated with
sufficient accuracy. It depends on the DARE components being executed as well as the size and
structural complexity of the operation (e.g., the depth and width of the workflow graph), the size of the
data or the complexity of the algorithms. This was confirmed by executing Seismological and
Meteorological workflows on testbed and production and monitoring the systems performance.

Although, DARE can be installed on one host, a minimum of three VMs of moderate power (e.g., 4 cores,
4GB RAM, 30GB storage each) is suggested in order to be able to benefit from the advantages of the
platform. Two of the nodes are assigned as K8s masters while the rest act as nodes. In case of increased
demand, it is easy to increase the processing and/or storage power of the platform with additional
nodes using K8s scaling abilities. After it is launched, operators must be prepared to adjust (usually,
extend) resources to demand.

K8s automatically handles physical allocation, as long as there are enough resources to allocate. For
example, if a component instance requires unusual amounts of RAM, K8s attempts to execute it on a
VM where this amount of RAM is available. The operators have to make sure that these nodes exist and
enough of them are available. Monitoring can provide good indications on which resources are
insufficient. In this case, operators must be able to support the platform by acquiring additional
resources or allocating more of the computing and storage power available on the same cluster.

The requirements of the Platform components are primarily related to the traffic handled by the service
(e.g., users served per some time unit) and, consequently, the scope of the service (local or public). The
requirements of DARE management components strongly affect the storage capacity planning (size and
availability of shared, persistent storage), while the requirements of the DARE execution environments
affect the computational power planning (quantity and quality of nodes).

3.1 Computational Power
In order to add computational resources, new VMs have to be provisioned. For instance, in case of an
IaaS cloud, we can update provisioning scripts by adding definitions of the extra resources and re-run
them against the IaaS API, as described in “IaaS Provisioning” section. When this process is completed,
K8s must become aware of the new nodes in order to utilize them.

Below we illustrate how to connect a new worker node to K8s. First, token is acquired from the admin
host, or by executing the whole join command:

Check if a token is there
$ sudo kubeadm token list
If the token is expired, issue a new one
$ sudo kubeadm token create

DARE-777413 Public D5.4

 Page | 23

Get the join command
$ sudo kubeadm token create --print-join-command

Keep the join command for the next step. It must look something like this:

kubeadm join 10.0.0.1:6443 \
--token qt57zu.wuvqh64un13trr7x \
--discovery-token-ca-cert-hash
sha256:5ad014cad868fdfe9388d5b33796cf40fc1e8c2b3dccaebff0b066a0532e8723

Log on the new node, install docker, kubeadm and kubelet and join the cluster:

Install software
$ sudo apt install -y apt-transport-https
$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
$ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"
$ sudo apt update && sudo apt install -y kubelet kubeadm docker.io

Join the cluster (paste the join command here)
$ kubeadm join ...

At this point, the new node is part of the K8s cluster.

If the compute resources are underutilized, we can remove some nodes and decommission them to
reduce maintenance costs.

On the admin host:

Get a list of the nodes
$ sudo kubeadm get nodes
Migrate pods from the node and prevent from getting new ones
$ sudo kubectl drain <node-name> --delete-local-data --ignore-daemonsets
$ sudo kubectl cordon <node-name

On the node to be removed:

Revert changes made by kubeadm join
$ sudo kubeadm reset

3.2 Storage
In DARE, K8s relies on Rook to provide a CEPH-RBD57 layer for storage space shared between pods,
which is mandatory for fast execution of workflows and other distributed calculations. With Rook, the
process of increasing or reducing storage availability is greatly simplified.

57 https://docs.ceph.com/en/latest/rbd/

DARE-777413 Public D5.4

 Page | 24

From the perspective of a DARE component implementation, all shared storage is available to all pods
all the time, but in reality pods perform well only on data available on the same physical space.Rook
CEPH takes care of making data available on pod by allocating PVs (Persistent Volumes) to PVCs
(Persistent Storage Claims)58, but at the end of the day the data has to be copied on the same physical
space with the pod.

In order to satisfy requirements for data intensive operations, it may be necessary to extend the storage
space on at least some K8s nodes. Physical storage extensions can either be implemented with
additional storage volumes on existing VMs, or by provisioning new VMs with larger disk spaces and
making them available for K8s.

In case of a new VM with a large physical volume, Rook will take care of the extra storage and will make
it available without any additional configurations.

In case of an additional storage device attached to an existing VM, we need to update the file
“rook/cluster/examples/kubernetes/ceph/cluster.yaml” in the “rook” directory to look for such
devices, by replacing “useAllDevices: false“ with “useAllDevices: true” and applying the change:

$ kubectl apply -f cluster.yaml

Another option is to explicitly declare the physical storage resources available to CEPH. It is possible to
pick specific paths from the filesystem of a node or give away whole block devices, as shown in the
example below.

 nodes:
 - name: "98.76.54.32"
 directories: # specific directories to use for storage can be specified for each node
 - path: "/rook/storage-dir"
 resources:
 limits:
 cpu: "500m"
 memory: "1024Mi"
 requests:
 cpu: "500m"
 memory: "1024Mi"
 - name: "98.76.54.31"
 devices: # specific devices to use for storage can be specified for each node
 - name: "sdb"
 - name: "sdc"
 config: # configuration can be specified at the node level which overrides the cluster level config
 storeType: filestore

58 https://kubernetes.io/docs/concepts/storage/persistent-volumes/

DARE-777413 Public D5.4

 Page | 25

This approach allows for full control of the physical resources, which would help in supporting
calculations with different storage requirements or when the resources are scarce and uneven. The
drawback of this method is the high maintenance cost, being incompatible with the auto-discovery
mechanism of Rook.

DARE-777413 Public D5.4

 Page | 26

4 Authentication and Authorization
The A/A (Authentication/Authorization) requirements of the platform depends on the type of users it
supports and the scope of the installation. The aim of an A/A is to protect sensitive data and processes
without disturbing accessibility or operations by experts and legitimate information consumers. If the
installation is deployed and maintained locally, and is accessible only on premises of an institution, it is
preferable to keep a simple A/A scheme, which focuses on providing access to some users. If, on the
other hand, the installation is exposed to a wide range of experts and information consumers (e.g. on
a multi-institutional or national level), it is required to support multiple access roles focusing also on
isolating processes and ensuring that the provided resources will be utilized for the intended purposes.

DARE A/A policy is designed with EOSC integration in mind. Services developed in the scope of European
projects on the way to EOSC esp. EOSC-hub59 , which has proved to be useful, was already integrated
in DARE. In specific, the login service is interoperable with EGI-Checkin60 and for high
volume data exchange B2Drop61 is used. What’s more, resources for the testbed and production
platforms are provisioned in the scope of the Federated Cloud (EOSC–HUB).

In order to make the service available to EOSC, we set up an SSO (Single Sign-On) environment on
Keycloak and then create clients for the appropriate federations. Keycloak offers OAuth262 with OpenID
Connect63 (EOSC portal, EGI Check-In, EUDAT B2Access) as well as SAML 2.064 (EDUGain) clients. In all
these cases, the DARE side will act as a service provider, redirecting potential users to the respective
federated login mechanism. Through the use of an own Keycloak deployment, the DARE platform allows
community administrators the choice to implement their own identity databases or integrate with all
providers or proxies that implement the OAuth2 with OpenID Connect technology. These include the
ones mentioned above as well as many other providers, such as Google, Facebook, GitHub, etc.

A client (dare-login) is already registered this way and provides access to the DARE login endpoint. It is
trivial to start a new OpenID Connect client on the Keycloak admin UI (see “Setting up Platform
Components”) from the “Client” tab.

59 https://www.eosc-hub.eu/
60 https://www.egi.eu/services/check-in/
61 https://eudat.eu/services/b2drop
62 https://tools.ietf.org/html/rfc6749
63 https://openid.net/connect/
64 http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

DARE-777413 Public D5.4

 Page | 27

5 Monitoring
The platform is monitored by an open-source stack consisting of Prometheus65, Alertmanager66 and
Grafana67. These tools monitor, alert and visualize the performance of the platform, as it was suggested
in D5.3. Prometheus acts as the backend for the two other services, triggering Alertmanager and
providing the information visualized by Grafana.

DARE installations can use Prometheus to monitor every aspect of the platform. The latest DARE release
contains a setup for monitoring the performance of the core DARE components, but more scrape rules
can be added in order to monitor other aspects of the execution e.g., statistics on specific data or
operations.

Prometheus acts as the information collector and processor, but the service does not inherently
distinguish between different types of K8s pods. Statistics and measurements are “scraped”68 equally
from all containers regardless of their type (Platform, DARE management or DARE execution
components). Meaningful information is produced by querying Prometheus with context information
stored implicitly in pod name prefixes (e.g., a dispel4py pod name may start with “dispel4py_”) or other
types of systemic metadata. Thus, Grafana can group and visualize performance statistics on all types
of pods, regardless of their type.

5.1 Setup the stack
Prometheus can be installed on the same K8s cluster or externally. In the first case, setup is easier, but
the later has the advantage of being able to monitor large scale failures on the K8s cluster level.

To install prometheus, alertmanager and grafana and expose them for configuration:

Install the stack
$ helm install prometheus stable/prometheus --name dare --namespace monitoring
$ helm install prometheus-operator stable/prometheus-operator \
 --namespace monitoring --values values.yaml69
$ helm install grafana stable/grafana --namespace monitoring

Expose prometheus and grafana
$ kubectl port-forward \
 --namespace default svc/prometheus-kube-prometheus-prometheus 9090:9090
$ export GRAFANA_POD=$(kubectl get pods \
 --namespace default \
 -l "app.kubernetes.io/name=grafana,app.kubernetes.io/instance=grafana" \
 -o jsonpath="{.items[0].metadata.name}")
$ kubectl --namespace default port-forward $GRAFANA_POD 3000:3000

Get grafana admin password
$ echo "$(kubectl get secret grafana-admin \
 --namespace default -o jsonpath="{.data.GF_SECURITY_ADMIN_PASSWORD}\
 | base64 --decode"

65 https://prometheus.io/
66 https://prometheus.io/docs/alerting/latest/alertmanager/
67 https://grafana.com/
68 The term “scrape” is the one used in Prometheus documentation
69 https://github.com/helm/charts/blob/master/stable/prometheus/values.yaml

DARE-777413 Public D5.4

 Page | 28

Prometheus is now accessible on port 9090 and Grafana on 3000. To make them talk to each other, log
on as “admin” on the Grafana Dashboard, and add Prometheus as a Data source. When prompted for
the url, use the internally accessible Prometheus URL, as shown on figure 2, below:
http://prometheus-kube-prometheus-prometheus.default.svc.cluster.local:909070
This will help to secure information, by disallowing access to Prometheus but allowing interested
parties to gauge on Grafana-visualized metrics and statistics.

Figure 2: Add prometheus as a Data SOurce on Grafana

Grafana must be further configured by inserting visual elements on its Dashboards. Each visual element
is feeded by a data source. The aesthetics and visual aspects of these elements are a matter of
preference. The focus of this section is on the content.

When Grafana is configured, expose the deployment:

$ kubectl expose deployment grafana --type=LoadBalancer --port=80 \
 --target-port=3000 --protocol=TCP --name=grafana

5.2 Annotate pods
Any pod with the proper annotations will be automatically observed (“scraped”) by Prometheus, thus
making the information available to Grafana. Prometheus supports a variety of annotations regarding
performance, system information and specific metrics, scraped and processed in a time-series manner.
The annotations in “values.yaml” file71 cover the needs of a DARE installation, but more can be added

70 Not a URI, but a location, accessible internally. More on the *.cluster.local suffix:
 https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
71 https://github.com/helm/charts/blob/master/stable/prometheus/values.yaml

DARE-777413 Public D5.4

 Page | 29

if needed. A full list of the annotations can be found on the chart’s documentation72.

In order to get prometheus to observe pods, they need to be annotated as shown below:

...
metadata:
 annotations:
 prometheus.io/scrape: "true"
 prometheus.io/path: /metrics
 prometheus.io/port: "9090"
...

Each file annotated this way, must be reloaded with “kubectl apply -f”.

5.3 Alerts
Alertmanager can be configured to provide notifications for various events. It can be configured from
an “alertmanager.yaml” file. A simple configuration for an email-based alert policy can be found at the
appendix. It is constructed to only report critical events. More elaborate alerts are supported, but they
are not necessary in the context of a local installation.

72 https://github.com/helm/charts/tree/master/stable/prometheus#configuration

DARE-777413 Public D5.4

 Page | 30

6 Security and safety
Security requirements are relevant to the value and sensitivity of the data being stored and processed
in the platform. A security strategy must consider various factors i.e., protecting infrastructure with
firewalls, control access with Keycloak73 and safeguard HTTPS transports using TLS domain-verified
certificates with cert-manager74. On top of that, container images deployed on the platform are
scanned for vulnerabilities with Harbor. Keycloak and cert-manager configurations are already covered
in previous sections.

Regarding the various types of components, security concerts refer to any components exposed directly
or indirectly to the outside world. As a security principle, we only expose a service if we must. What’s
more, each component entering the realm of the platform (i.e., new container images), must be
disinfected before put into use. Workflows and applications are executed in isolated environments,
while access to provenance, registry or raw data is strictly controlled.

6.1 Firewall
It is suggested for all nodes to be protected by firewalls. Different firewalls may fit to different host
operations systems. Testbed VMs, for instance, are protected by ufw75, which is a good fit to Ubuntu
16.04. In any case, we must be careful to set it up so that it does not obstruct K8s functionality.

Install ufw
$ sudo apt install ufw

Open what is needed for K8s and administration
$ sudo ufw allow ssh
$ sudo ufw allow 179/tcp
$ sudo ufw allow 4789/tcp
$ sudo ufw allow 5473/tcp
$ sudo ufw allow 443/tcp
$ sudo ufw allow 6443/tcp
$ sudo ufw allow 2379/tcp
$ sudo ufw allow 4149/tcp
$ sudo ufw allow 10250/tcp
$ sudo ufw allow 10255/tcp
$ sudo ufw allow 10256/tcp
$ sudo ufw allow 9099/tcp
$ sudo ufw allow 3000/tcp

6.2 Harbor
Harbor76 is an open source registry that secures artifacts with policies and role-based access control,
ensures images are scanned and free from vulnerabilities, and signs images as trusted. As explained in
D5.277, when new DARE components or PEs are registered to the platform, they are uploaded to the
Harbor registry, scanned and if they turn out safe, marked as available for execution. Harbor is
considered an optional platform component, but it is highly suggested for security.

73 see chapter “Authentication and Authorization” in the present
74 https://cert-manager.io/docs/
75 https://help.ubuntu.com/community/UFW
76 https://goharbor.io/
77 D5.2 Platform Infrastructure, Usage & Deployment II

DARE-777413 Public D5.4

 Page | 31

We install it through helm:

$ sudo helm repo add harbor https://helm.goharbor.io
$ sudo helm fetch harbor/harbor --untar
$ sudo helm install --name dare-harbor .

We can modify Harbor by editing the “values.yaml” file, for instance to set up an ingress for the
corresponding service, but since we need it for internal checks, it is not mandatory in our context.

6.3 Failure prevention and recovery
Failure prevention and recovery is defined as the ability to avoid and, if impossible, recover data and
functionality from system failures or other types of disaster. Raw and processed data in DARE, as well
as their processing algorithms, are valuable. That’s why the primary concern of a failure prevention
strategy is to maintain their integrity, but also recover reasonably fast in case of a failure.

Infrastructure failures can be caused by natural or artificial factors and can compromise the efficiency
or availability of resources. Cloud operators have developed elaborate techniques in order to manually
or automatically recover faulty clusters or VMs by transferring the setup to different hardware. Disk
failures are the most critical since they may cause data loss, although cloud vendors utilize replication
techniques like RAID and frequent full backups.

K8s features tools with the ability to quickly redeploy a platform. Maintaining automated deployment
methods for the full stack is highly suggested for many reasons, one of which is quick recovery. As soon
as the VMs are healthy, K8s will auto start. If some operations are still failing, the DARE platform
provides a “redeploy” script. Operators and developers must update the deployment scripts whenever
the stack is modified.

Data preservation is the first concern, as it will allow the recovery of at least the persistent components
of the platform (e.g., provenance, registries, execution API). It also preserves all the materials needed
to rebuild the workflows (container images, workflow graphs, input and output of previous executions).
For some types of disaster, workflows may have to be rebuilt manually by the cooperators, but if there
is no data loss, they are always recoverable.

In order to prevent data loss, it is suggested to install and maintain a backup service like BorgBackup78,
duplicity79 or rsync, which can backup files like Docker images, K8s persistent volumes, DB dumps and
K8s etc80.

BorgBackup is an open source incremental deduplicated backup tool for full machine backups. It can be
installed on each host to periodically sync storage volumes and configuration files to a location
topologically unrelated to the cluster.

To set up borg, provision a host with adequate storage space (e.g., a few times larger than the whole
cluster space) running a familiar operating system (in our case, ubuntu 16.04).This will be our backup

78 https://www.borgbackup.org/
79 http://duplicity.nongnu.org/
80 https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

DARE-777413 Public D5.4

 Page | 32

server.

On the backup server (backup.example.org):

$ sudo apt install borgbackup
Assuming /media/backup is a large storage space
$ sudo serve --restrict-to-path /media/backup

Make sure the backup server is PPK-accessible and the access key is stored in a known location (e.g.,
/home/user/.ssh/backup.example.org.key). On each host:

$sudo apt install borgbackup

Context
$ export BORH_PASSPHRASE=’some passphrase for the backup not for the key’
$ export BORG_RSH=’ssh -i /home/user/.ssh/backup.example.org.key’

Only the first time, initialize the backup
$ borg init --encryption keyfile username@backup.example.org:dare_full

To update the backup
$ borg create -p -s -C zlib,6 ::bare-`date +%Y-%m-%d.%H:%M` / \
 -e /tmp -e /root -e /boot

See all backups
$ borg list

Recover a file or directory from the backup
$ borg extract ::base-<some date> file/to/restore

If some pods are active while being backed up, they will only contribute a snapshot of the process and
data to the daily increment. It is suggested to periodically (e.g., weekly) pause all K8s pods and execute
a full backup, while keeping the daily backups on schedule. On top of that, it is a good practice to
periodically capture DB and registry dumps and store them at a place in the host included in the backup
path.

The most important resource to back up is the persistent storage. Normally, the Rook-ceph cluster is
not accessible outside K8s, but we can configure it to be mountable from inside the master host as long
as “hostNetwork: true” (see K8s Network in the Appendix).

$ mount -t ceph -o name=admin,secret=$secret $mon_endpoints:/ /ceph_mount

mailto:username@backup.example.org

DARE-777413 Public D5.4

 Page | 33

7 Conclusion
The DARE platform aims to support scientific communities in various ways i.e., assist their effort to
tackle arising data processing challenges like workflows, parallelization, timely operations and intensive
computations, while providing novel features like provenance. All these are offered in a complete and
functional platform which encourages collaboration, reusability of valuable resources (both
computational and scientific), consistency and robustness.

The scope of DARE varies depending on the context in which it is required to serve. On one hand, DARE
collaborators envisioned large-scale deployments intended to provide computational services to wide
academic audiences. On the other, institutions and labs are welcome to utilize the platform to serve
their own specific needs. Each of these scopes produces a different class of requirements.

In this document we presented the philosophy of a DARE installation and provided concrete suggestions
and guidelines based on the experience of three years from setting up and maintaining DARE testbed
and production infrastructures. Since the actual details of these deployments are covered in D5.2, we
concentrated on giving advice on a variety of maintenance and deployment subjects. We aspired to
enrich advice with concrete examples and highlight tricky details in technical procedures.

To conclude, the DARE platform was an exciting challenge for operators and developers, because it
combines a wide range of well established technologies in one stack and was continuously asserted by
its potential users, the scientific communities. We primarily adopted tested, mature technologies when
building the infrastructure and platform, so that developers and engineers can alleviate their efforts on
solving the issues of the higher DARE layers. Our guidelines are based on tried out industry standards
only when they fit well to DARE architecture.

Last but not least, as the DARE platform matures, policies and operations are due to adjustments or
replacements. New technologies may cause the re-evaluation of some of our choices and new versions
of incorporated software may be required in the future. DARE will be challenged to adapt to an
environment of evolving technologies and emerging scientific demands. This will be good news, though.
It means that scientific communities will embrace it and put it to use.

DARE-777413 Public D5.4

 Page | 34

8 Appendix

K8s Network

apiVersion: v1
kind: List
items:
 - apiVersion: v1
 kind: ServiceAccount
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 namespace: kube-system
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 rules:
 - apiGroups:
 - ''
 resources:
 - pods
 - namespaces
 - nodes
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - networking.k8s.io
 resources:
 - networkpolicies
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - ''

DARE-777413 Public D5.4

 Page | 35

 resources:
 - nodes/status
 verbs:
 - patch
 - update
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 roleRef:
 kind: ClusterRole
 name: weave-net
 apiGroup: rbac.authorization.k8s.io
 subjects:
 - kind: ServiceAccount
 name: weave-net
 namespace: kube-system
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 namespace: kube-system
 rules:
 - apiGroups:
 - ''
 resourceNames:
 - weave-net
 resources:
 - configmaps
 verbs:
 - get
 - update
 - apiGroups:
 - ''
 resources:
 - configmaps
 verbs:
 - create
 - apiVersion: rbac.authorization.k8s.io/v1

DARE-777413 Public D5.4

 Page | 36

 kind: RoleBinding
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 namespace: kube-system
 roleRef:
 kind: Role
 name: weave-net
 apiGroup: rbac.authorization.k8s.io
 subjects:
 - kind: ServiceAccount
 name: weave-net
 namespace: kube-system
 - apiVersion: apps/v1
 kind: DaemonSet
 metadata:
 name: weave-net
 annotations:
 cloud.weave.works/launcher-info: |-
 {
 "original-request": {
 "url": "/k8s/net?k8s-version=1.15.3",
 "date": "Fri Dec 18 2020 11:28:52 GMT+0000 (UTC)"
 },
 "email-address": "support@weave.works"
 }
 labels:
 name: weave-net
 namespace: kube-system
 spec:
 minReadySeconds: 5
 selector:
 matchLabels:
 name: weave-net
 template:
 metadata:
 labels:
 name: weave-net
 spec:
 containers:
 - name: weave
 command:
 - /home/weave/launch.sh
 env:
 - name: HOSTNAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: spec.nodeName
 image: 'docker.io/weaveworks/weave-kube:2.7.0'
 readinessProbe:

DARE-777413 Public D5.4

 Page | 37

 httpGet:
 host: 127.0.0.1
 path: /status
 port: 6784
 resources:
 requests:
 cpu: 50m
 memory: 100Mi
 securityContext:
 privileged: true
 volumeMounts:
 - name: weavedb
 mountPath: /weavedb
 - name: cni-bin
 mountPath: /host/opt
 - name: cni-bin2
 mountPath: /host/home
 - name: cni-conf
 mountPath: /host/etc
 - name: dbus
 mountPath: /host/var/lib/dbus
 - name: lib-modules
 mountPath: /lib/modules
 - name: xtables-lock
 mountPath: /run/xtables.lock
 - name: weave-npc
 env:
 - name: HOSTNAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: spec.nodeName
 image: 'docker.io/weaveworks/weave-npc:2.7.0'
 resources:
 requests:
 cpu: 50m
 memory: 100Mi
 securityContext:
 privileged: true
 volumeMounts:
 - name: xtables-lock
 mountPath: /run/xtables.lock
 dnsPolicy: ClusterFirstWithHostNet
 hostNetwork: true
 hostPID: true
 priorityClassName: system-node-critical
 restartPolicy: Always
 securityContext:
 seLinuxOptions: {}
 serviceAccountName: weave-net
 tolerations:
 - effect: NoSchedule
 operator: Exists
 - effect: NoExecute
 operator: Exists
 volumes:
 - name: weavedb
 hostPath:
 path: /var/lib/weave
 - name: cni-bin
 hostPath:

DARE-777413 Public D5.4

 Page | 38

 path: /opt
 - name: cni-bin2
 hostPath:
 path: /home
 - name: cni-conf
 hostPath:
 path: /etc
 - name: dbus
 hostPath:
 path: /var/lib/dbus
 - name: lib-modules
 hostPath:
 path: /lib/modules
 - name: xtables-lock
 hostPath:
 path: /run/xtables.lock
 type: FileOrCreate
 updateStrategy:
 type: RollingUpdate

mpi-operator-0.1.0/deploy/3-mpi-operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mpi-operator
 namespace: mpi-operator
 labels:
 app: mpi-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 app: mpi-operator
 template:
 metadata:
 labels:
 app: mpi-operator
 spec:
 serviceAccountName: mpi-operator
 containers:
 - name: mpi-operator
 image: mpioperator/mpi-operator:0.1.0
 args: [
 "-alsologtostderr",
 "--gpus-per-node", "8",
 "--kubectl-delivery-image",
 "mpioperator/kubectl-delivery:0.1.0"

mandatory.yaml

apiVersion: v1
kind: Namespace
metadata:

DARE-777413 Public D5.4

 Page | 39

 name: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx

kind: ConfigMap
apiVersion: v1
metadata:
 name: nginx-configuration
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx

kind: ConfigMap
apiVersion: v1
metadata:
 name: tcp-services
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx

kind: ConfigMap
apiVersion: v1
metadata:
 name: udp-services
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx

apiVersion: v1
kind: ServiceAccount
metadata:
 name: nginx-ingress-serviceaccount
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
 name: nginx-ingress-clusterrole
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
rules:
 - apiGroups:
 - ""
 resources:
 - configmaps
 - endpoints
 - nodes

DARE-777413 Public D5.4

 Page | 40

 - pods
 - secrets
 verbs:
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - nodes
 verbs:
 - get
 - apiGroups:
 - ""
 resources:
 - services
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
 - patch
 - apiGroups:
 - "extensions"
 - "networking.k8s.io"
 resources:
 - ingresses
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - "extensions"
 - "networking.k8s.io"
 resources:
 - ingresses/status
 verbs:
 - update

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: Role
metadata:
 name: nginx-ingress-role
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
rules:
 - apiGroups:
 - ""
 resources:
 - configmaps
 - pods
 - secrets
 - namespaces
 verbs:

DARE-777413 Public D5.4

 Page | 41

 - get
 - apiGroups:
 - ""
 resources:
 - configmaps
 resourceNames:
 # Defaults to "<election-id>-<ingress-class>"
 # Here: "<ingress-controller-leader>-<nginx>"
 # This has to be adapted if you change either parameter
 # when launching the nginx-ingress-controller.
 - "ingress-controller-leader-nginx"
 verbs:
 - get
 - update
 - apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - create
 - apiGroups:
 - ""
 resources:
 - endpoints
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: nginx-ingress-role-nisa-binding
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: nginx-ingress-role
subjects:
 - kind: ServiceAccount
 name: nginx-ingress-serviceaccount
 namespace: ingress-nginx

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: nginx-ingress-clusterrole-nisa-binding
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: nginx-ingress-clusterrole
subjects:
 - kind: ServiceAccount
 name: nginx-ingress-serviceaccount
 namespace: ingress-nginx

DARE-777413 Public D5.4

 Page | 42

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-ingress-controller
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 template:
 metadata:
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 annotations:
 prometheus.io/port: "10254"
 prometheus.io/scrape: "true"
 spec:
 # wait up to five minutes for the drain of connections
 terminationGracePeriodSeconds: 300
 serviceAccountName: nginx-ingress-serviceaccount
 nodeSelector:
 kubernetes.io/os: linux
 containers:
 - name: nginx-ingress-controller
 image: quay.io/kubernetes-ingress-controller/nginx-ingress-
controller:0.30.0
 args:
 - /nginx-ingress-controller
 - --configmap=$(POD_NAMESPACE)/nginx-configuration
 - --tcp-services-configmap=$(POD_NAMESPACE)/tcp-services
 - --udp-services-configmap=$(POD_NAMESPACE)/udp-services
 - --publish-service=$(POD_NAMESPACE)/ingress-nginx
 - --annotations-prefix=nginx.ingress.kubernetes.io
 securityContext:
 allowPrivilegeEscalation: true
 capabilities:
 drop:
 - ALL
 add:
 - NET_BIND_SERVICE
 # www-data -> 101
 runAsUser: 101
 env:
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 ports:

DARE-777413 Public D5.4

 Page | 43

 - name: http
 containerPort: 80
 protocol: TCP
 - name: https
 containerPort: 443
 protocol: TCP
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /healthz
 port: 10254
 scheme: HTTP
 initialDelaySeconds: 10
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 10
 readinessProbe:
 failureThreshold: 3
 httpGet:
 path: /healthz
 port: 10254
 scheme: HTTP
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 10
 lifecycle:
 preStop:
 exec:
 command:
 - /wait-shutdown

apiVersion: v1
kind: LimitRange
metadata:
 name: ingress-nginx
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
spec:
 limits:
 - min:
 memory: 90Mi
 cpu: 100m
 type: Container

keycloak-values.yaml

 init:
 image:
 repository: busybox
 tag: 1.31
 pullPolicy: IfNotPresent
 resources: {}

keycloak:
 replicas: 1

DARE-777413 Public D5.4

 Page | 44

 image:
 repository: docker.io/jboss/keycloak
 tag: "10.0.2"
 pullPolicy: IfNotPresent

 hostAliases: []
 enableServiceLinks: false
 podManagementPolicy: Parallel
 restartPolicy: Always

 ## The path keycloak will be served from. To serve keycloak from the root path,
use two quotes (e.g. "").
 basepath: auth

 ## Additional init containers, e. g. for providing custom themes
 extraInitContainers: |

 ## Additional sidecar containers, e. g. for a database proxy, such as Google's
cloudsql-proxy
 extraContainers: |
 extraArgs: "-Dkeycloak.profile.feature.admin_fine_grained_authz=enabled -
Dkeycloak.profile.feature.token_exchange=enabled"

 ## Username for the initial Keycloak admin user
 username: keycloak
 password: "AdminPasswordHere"

 ## Allows the specification of additional environment variables for Keycloak
 extraEnv: |
 - name: PROXY_ADDRESS_FORWARDING
 value: "true"

 livenessProbe: |
 httpGet:
 path: {{ if ne .Values.keycloak.basepath "" }}/{{ .Values.keycloak.basepath
}}{{ end }}/
 port: http
 initialDelaySeconds: 300
 timeoutSeconds: 5
 readinessProbe: |
 httpGet:
 path: {{ if ne .Values.keycloak.basepath "" }}/{{ .Values.keycloak.basepath
}}{{ end }}/realms/master
 port: http
 initialDelaySeconds: 30
 timeoutSeconds: 1

 ## Add additional volumes and mounts, e. g. for custom themes
 extraVolumes: |
 extraVolumeMounts: |

 ## Add additional ports, eg. for custom admin console
 extraPorts: |

 service:
 annotations: {}
 labels: {}

 ## ServiceType
 type: ClusterIP

DARE-777413 Public D5.4

 Page | 45

 httpPort: 80
 httpNodePort: ""
 httpsPort: 8443
 httpsNodePort: ""

 ## Persistence configuration
 persistence:
 # If true, the Postgres chart is deployed
 deployPostgres: true
 dbVendor: postgres
 dbUser: keycloak
 dbPassword: ""

postgresql:
 ### PostgreSQL User to create.
 postgresqlUsername: keycloak

 ## PostgreSQL Password for the new user.
 postgresqlPassword: "ChangeThisPassword"

 ## PostgreSQL Database to create.
 postgresqlDatabase: keycloak

 ## Persistent Volume Storage configuration.
 persistence:
 enabled: true

dare-login-dp.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: dare-login
 labels:
 app: dare-login
spec:
 replicas: 1
 selector:
 matchLabels:
 app: dare-login
 template:
 metadata:
 labels:
 io.kompose.service: dare-login
 app: dare-login
 spec:
 containers:
 - name: dare-login
 image: registry.gitlab.com/project-dare/dare-platform/dare-login:v1.1
 imagePullPolicy: Always
 ports:
 - containerPort: 80
 env:
 - name: CLIENT_ID
 value: dare-login
 - name: CLIENT_SECRET
 value: 8f6f4d70-b159-44a7-a520-f8b28bfd4bd8
 - name: ADMIN_USERNAME
 value: admin

DARE-777413 Public D5.4

 Page | 46

 - name: ADMIN_PASSWORD
 value: admin
 - name: "KEYCLOAK_DOMAIN"
 value: "https://example.org"

alertmanager.yaml

global:
 # The smarthost and SMTP sender used for mail notifications.
 smtp_smarthost: 'localhost:25'
 smtp_from: 'alertmanager@example.org'
 smtp_auth_username: 'alertmanager'
 smtp_auth_password: 'password'

The directory from which notification templates are read.
templates:
- '/etc/alertmanager/template/*.tmpl'

The root route on which each incoming alert enters.
route:
 # The labels by which incoming alerts are grouped together.
 group_by: ['alertname', 'cluster', 'service']
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 3h

 # A default receiver
 receiver: dare-mails

 # The child route trees.
 routes:
 # This routes performs a regular expression match on alert labels to
 # catch alerts that are related to a list of services.
 - match_re:
 service: ^(dare-login|d4p-registry|dare-shared-volumes|keycloak|sprov|cwl)$
 receiver: dare-mails

Inhibition rules allow to mute a set of alerts given that another alert is
firing.
inhibit_rules:
- source_match:
 severity: 'critical'
 target_match:
 severity: 'warning'
 # Apply inhibition if the alertname is the same.
 equal: ['alertname', 'cluster', 'service']

receivers:
- name: 'dare-mails'
 email_configs:
 - to: 'dare+alerts@example.org'

https://example.org/

	1 Introduction
	1.1 Platform architecture overview

	2 Infrastructure provisioning
	2.1 IaaS provisioning
	Terraform and OpenStack
	Synnefo with kamaki and ansible
	Post-build provision

	2.2 Setting up Kubernetes
	2.3 Setting up Platform Components
	Helm/Tiller
	MPI operator
	Rook CEPH
	NginX Ingress
	Cert-manager
	Keycloak
	Deploy all

	3 Capacity planning and scaling
	3.1 Computational Power
	3.2 Storage

	4 Authentication and Authorization
	5 Monitoring
	5.1 Setup the stack
	5.2 Annotate pods
	5.3 Alerts

	6 Security and safety
	6.1 Firewall
	6.2 Harbor
	6.3 Failure prevention and recovery

	7 Conclusion
	8 Appendix
	K8s Network
	mpi-operator-0.1.0/deploy/3-mpi-operator.yaml
	mandatory.yaml
	keycloak-values.yaml
	dare-login-dp.yaml
	alertmanager.yaml

